EXPERT REPORT OF MARY JANE WILSON, PRESIDENT of WZI Inc.

Executive Summary

I, Mary Jane Wilson, have been requested by the Environmental Defense Fund to review and submit comments on certain aspects of Prehearing Statements and related filings addressing the proposed revisions to Regulations Numbers 3 & 7. I have worked in air pollution control and participated in regulatory rule making and compliance since 1976 particularly concerning the oil and gas exploration and production industry. My resume is included as Exhibit No. 1.

My opinions and comments relate to: (1) proposed changes to reporting and permitting of vented emissions, (2) proposed changes to controls from tanks, (3) the control of emissions from water tanks greater than 2 tons per year of VOCs, (4) proposed changes to the LDAR provisions, and, (5) whether the proposed revisions would lead to the shut-in of certain wells on a large scale.

Discussion

1 Removal of the Exemption for Routine and Predictable Venting from APEN and Permitting Is Reasonable.

The Division proposes to remove an exemption for routine and predictable venting of natural gas, and some Prehearing Statements object to this proposed change. This change is reasonable and will provide valuable information about emissions from oil and gas production activities. These types of emissions are knowable and can reasonably be estimated. The reporting of these emissions is currently required in California.

2 Amendments Proposed by the Division for Control Requirements for Storage Tanks (Sections II.C.1.e and II.C.2.b) Are Reasonable.

The Division proposes to change certain control requirements for storage tanks, such as reducing the threshold for controlling tanks to 2 tons per year of Volatile Organic Compounds (VOCs) and automatic tank gauging. Some Prehearing Statements object to certain aspects of these proposed changes.

2.1 Change of control threshold to tanks with emissions greater than 2 tons per year

The Division has proposed to reduce the threshold for control of tanks to 2 tons per year of VOCs, on a statewide basis. The Division evaluated the cost effectiveness of reducing emissions from tanks that

emit 2 tons per year of VOCs or more by evaluating the costs and estimated emissions benefits of the controls. Some parties' Prehearing Statements object to this proposed change as not cost effective.

I have reviewed the Division's analyses of costs and emissions benefits of these controls, and conclude that they are reasonable. For example, the Division assumes a 15-year useful life for estimating the cost of flares to control tank emissions. Some industry Prehearing Statements suggest that a shorter period of amortization should be used because the flares could be installed at sites where the well(s) will be shut down in less than 15 years. In my experience, if a piece of common equipment, such as a flare, has not been utilized for its useful life for whatever reason—including when a well or number of wells are abandoned due to the economics of the situation— the equipment is not simply disposed of as salvage but rather is re-tasked for use in another installation after repairs/maintenance. Therefore, the Division properly estimated the life of the control equipment in its analysis. If a well or group of wells are predicted to have a relatively short life, rentals of control equipment may be a more cost-effective alternative. The use of a 15-year useful life assumption is appropriate in this context.

2.2 LDAR on tanks greater than 2 tons per year of VOCs as part of STEM

By requiring controls for tanks greater than 2 tons per year, the amendments will require LDAR to be used on tanks of that size, at the same frequency as LDAR for other components at such facilities. This will provide cost effective emissions reductions. The number of components for tanks is small compared to well installations and some process equipment, but some tank components can be a more substantial source of leaks relative to the whole tank as a source, such as a hatch being left open. Experience indicates that more frequent inspection prevents recidivism and captures new component leaks. The advent of Optical Gas Imaging (OGI) allows for the use of a combination of the flexibility of Audio, Visual, Olfactory inspection (AVO) and precision of the improved Method 21-like method using equipment-based analysis, which reflects the implementation of previous rulemakings in 2014 and 2017. The implementation of OGI, while not mandatory, presents a consistently cost-effective option to contain and capture hydrocarbons, which would otherwise be wasted, and a means to effectively conform to regulatory intent.

2.3 Requirement to auto gauge at tanks

The Division proposes to control emissions from tank gauging. Tank gauging without opening the hatch on the top of a tank is possible, cost effective, and simple on new and retrofitted steel tanks. The quality and quantity of the hydrocarbon liquids can be measured by a variety of techniques both old and new, which are safer than opening a tank hatch. Such techniques include automatic level measurement and control as well as sampling ports that allow samples to be collected in various levels in the tank to determine quality. The practice of degassing a tank and taking a thief sample for quality is not necessary and not as accurate as some of the other methods. In addition, the strapping of a tank, while an accurate method, is not necessary to determine the level of liquids in a properly equipped tank.

3 Amendments Proposed by the Division for Control Requirements for Water Tanks Are Reasonable.

The Division has proposed to delete an exemption for water tanks. While water tanks as a class may emit less than other tanks (such as tanks containing condensate or oil), control of water tanks with emissions greater than 2 tons per year of VOCs is cost effective and will achieve emissions reductions.

Relative to condensate and oil tanks, water tanks will emit a greater fraction of methane than VOCs.¹ As a result, when large volumes of produced water are produced, potential reduction in methane will be significant due to its CO2e.

The cost effectiveness of this proposal will be enhanced because the use of flares as a control device will not be on a flare-per-tank basis. Flares are typically a single unit with a header that is common to all vented systems at a tank battery. If emissions from produced water tanks are captured under the proposed regulations based on the presence of a condensate tank or oil stock tank, the same flare system would be used for all tanks as opposed to individual flares. Normally, an oil stock tank will be sited near a produced water tank, and, therefore, it is not likely that a captured produced water tank subject to flare requirements will be sited far from other tanks requiring a flare that an additional flare is required. The benefit of capturing emissions from water tanks is magnified because of the conversion of free methane to CO2, reducing the impact of the emissions by a factor of 25 times or more.

3.1 Control emissions from fiberglass tanks with flares

Some parties' Prehearing Statements assert that the rules should exempt fiberglass water tanks that have VOC emissions of at least 2 tons per year. This is not necessary. It is feasible to route emissions from a fiberglass produced water tank to the same control device used to control other hydrocarbon tanks. Operators may need to configure the piping to the flare from the produced water tank differently than for the other hydrocarbon tanks; however, contrary to some industry assertions, it is not necessary to install a separate flare just to control emissions from the fiberglass produced water tank.

4 The changes to the LDAR Program Proposed by the Division Are Cost Effective and Reasonably Estimated by the Division.

The Division has proposed to require twice-a-year LDAR inspections at all facilities that have tank batteries with uncontrolled emissions greater than 2 tons per year of VOCs. This will increase LDAR at some sites from a frequency of never, once in a lifetime, or annually. I have reviewed the methods used by the Division to estimate the cost effectiveness of LDAR. The Division, as in 2014, utilized customary and reasonable procedures to estimate the costs and the emission reductions of the revised LDAR program.

My review of the costs shows that the Division's estimate is conservative, as it does not reflect significant decreases in LDAR costs since 2014. The cost of LDAR has fallen by about 30% since it was originally required in Colorado due to lower initial costs of equipment, availability of rental equipment and training programs, and general lack of inflation in oilfield services. Increased frequency takes advantage of existing reporting tools and equipment and is not directly incremental as if it were a new program, particularly at sites already completing LDAR inspections. Thus, because the proposed rulemaking is an incremental effort stemming from prior compliance activity, the empirical reference

¹ California Air Resources Board factors (Exhibit 2) are included for reference. TCEQ study (Exhibit 3) indicates that condensate emissions factors vary considerably by location and API gravity of condensate production, from 1 to 16, this assessment conservatively uses 16.22lb VOC/bbl. EPA has developed an emissions factor for uncontrolled condensate tanks of 0.18 kg CO2e/bbl, (Exhibit 4).

economic data can be readily extrapolated to reflect future additions in the program. This is the approach taken by the Division, which is reasonable.

Determining the effectiveness of control measures using detailed estimates based on the tank/component numbers relies on a presumption of success (or some degree of success) applied to the subject population much like component-based LDAR. However, in my experience, the total number of components per well is not the major indicator of LDAR cost or emission reduction efficiency. The type and variation of components subject to any such program will vary; however, certain components, such as compressor/pump seals or open tank hatches, are the major components that require repeated attention. While the initial LDAR review of a facility will catch many leaks that are not present in later inspections, the repeated use of LDAR will identify components that are major leaking components and that are found in most oil and gas facilities due to the process requirements. This is a key reason why increasing LDAR frequency will reduce emissions.

4.1 Cost of LDAR

The Division employed a standard approach to estimating the cost of LDAR, including the creation of model facilities and estimating costs and benefits based on component counts.

4.1.1 Inflation impacts

The Division inflated the labor costs of LDAR at a rate of 5.53%.² Inflation, if it were the sole cost driver, would have increased all costs by approximately 6% from 2014. The Engineering News Record data below is provided for reference.

Engineering News Record Data						
	2009 2014 2018 2018-2009 2018-2014					
Building Cost Index	5076	5761	6168	17.7%	6.6%	
Construction Cost Index	9779	10740	11326	13.6%	5.2%	
			Avg.	15.65%	5.9%	

On this basis the cost assessment by the Division in its Final Economic Impact Analysis would have been reasonably accurate (but high for reasons outlined below).

4.1.2 Other cost drivers

However, several other driving factors affect the costs and incremental costs of implementation based on the economic reference date chosen for the analysis:

- 1. any first costs due to new equipment,
- 2. any new requirement at a specific location that demands added labor time, and
- 3. any market-based pricing on the part of third-party service providers.

² Economic Impact Analysis (Final) for Reg 7 at 15–16 (Nov. 5, 2019).

4.1.2.1 First costs or equipment

First costs have decreased for several reasons. First, FLIR technology has continued to mature and the unit prices have decreased since 2009.³ Additionally, many producers currently subject to LDAR requirements have already purchased equipment and trained personnel. Lastly, the Regional Air Quality Council has made rentals available to producers through their rental program for a cost of \$500 per week.⁴ As a result, the estimated first cost of OGI has dropped by approximately 30% since the WZI 2014 analysis.

4.1.2.2 Reduced emissions from new requirements at previously excluded sites

Typically, the largest cost associated with implementing STEM and LDAR is sending additional trained personnel or third-party technicians to remote sites otherwise only subject to normal day-to-day operational visits. The new lower limit for LDAR requirements will add additional small tank batteries, but many of the sites proximate to the additional smaller tank batteries are already subject to Reg 3 and Reg 7 due to other considerations. Thus, as a practical matter, the personnel are already scheduled to be in the area and the new requirements will not necessitate an additional trip, provided the Division allows the additional tank LDAR inspections to coincide with other already-scheduled activities. Operators will schedule the tank inspections to occur at the same time as the more exhaustive facility requirements to minimize travel and additional staff-related costs. These benefits will have a greater impact in the attainment areas where the increased monitoring burden will coincide to some degree with the more remote nature of locations.

4.1.2.3 Cost of contractor service technicians

In exploration and production, service costs are often related to wholesale energy prices, due largely to the changes in demand for contract services and equipment. When the price is up, additional production causes an associated demand for contractor services. An escalation of the *costs per btu produced* is a simple and efficient indication of escalating costs in production-related services. The market price impact on service prices would likely be affected by the differential relative to the current floor price and the sensitivity would be indexed relative to the change as a percentage of the current floor as opposed to the absolute change, thus imbedded in the variable costs.

Based on historic production, the Colorado market is dominated by gas as opposed to oil by several orders of magnitude, indicating that any variations in gas prices will likely translate to variations in costs of service companies. Since the gas price has been flat, the cost of service companies has also been flat to down.

 ³ WZI estimated the one-time cost of FLIR at \$120,000 in our 2014 analysis. Based on updated information, current Optical Gas Imaging equipment FLIR or others has dropped to levels below \$85,000. See Exhibit 5.
 ⁴ See Exhibit 6.

From Energy Information Administration: WTI and Henry Hub Pricing

Gas pricing has been relatively stable since the 2008 period when the market relationship between oil and gas was redefined in response to the Gulf of Mexico moratorium and changes in global demands for oil as opposed to domestic gas. The price in 2009 at the start of the year was \$4.08/mmbtu (average was \$3.95/mmbtu). The price in 2014 at the start of the year was \$4.61/mmbtu (average price was \$4.31/mmbtu). The price at the beginning of 2018 was \$3.58/mmbtu (average price was \$2.6/mmbtu). The market price has dropped by 42% from 2014. A reasonable assumption exists that the current lowest price is the rational floor, there is a \$2.02/mmbtu floor price that drives decisions to produce or not. The market price impact on service prices would likely be affected by the differential relative to the embedded costs driving the floor and the sensitivity could be lower (herein estimated to be 21%).

Therefore, the various factors indicate that the true industry costs for LDAR including repairs will be lower than 2009, not higher as would be indicated by general inflation.

5 The Record Does Not Support the Concept that the Rule Will Cause Substantive Adverse Economic Impacts.

I have reviewed the analysis put forth in WLG_PHS_EX-004, the Economic Risks of Proposed Revisions to AQCC Regulation No. 7 on Colorado's Rural Communities [Considine]. That report does not provide significant meaningful information about the economic impact of the proposed amendments to

Regulation 7. As set forth above, the estimated costs of the Regulation 7 amendments are in many respects overstated by the Division.

The Considine report presumes that marginal wells are singularly critical to the economic well-being of operators, but ignores the risks of underfunded operators choosing to leave marginal wells attended, unmaintained and leaking at uncontrolled rates. It presents an argument that capturing emissions from small tanks will add unreasonable costs to the operation of the marginal wells associated with the tanks. The study presents a notion that marginal operators in search of better returns are not willing participants in good maintenance practices and that any additional costs will force a shut-in due to higher variable costs on a well by well basis. Industry performance in terms of production relative to market prices is a strong indicator of resilience to various cost-related stressors such as compliance costs, increased equipment costs, etc. This indicates that oil and gas operators have capacity to absorb increases of variable costs, like those from the proposed changes to Regulation 3 and Regulation 7, through more efficient use of personnel and equipment. Regardless, the costs of the proposed regulations are not likely to have a substantive impact to production at these sites, and so the Considine analysis should not be considered relevant.

newlau

Mary Jane Wilson, WZ/Inc.

Exhibit 1

Resume for

Mary Jane Wilson

WZI Inc.

EDUCATION/CERTIFICATION

B.S., Petroleum Engineering, Stanford University, 1972

Registered Environmental Property Assessor, REPA 450065

State of California Accredited Lead Verifier of Greenhouse Gas Emissions Data, Executive Order H-10-173

Special Government Employee, Department of Energy Ultra-Deepwater Advisory Committee, Chair

Member, National Petroleum Council

Member, SB 83 Commission for UIC, 2018-Present

Director - Mission Bank, Audit Committee

Past Director – Greater Bakersfield Chamber of Commerce

Patent Nos. US 6,659,178 B2 Apparatus and Method For Sealing Well Bores and Bore Holes, US 6,860,997 B1 Apparatus and method for processing Organic Materials

Past Director - California Independent Petroleum Association

Past Director - Kern Economic Development Corporation and Chairman

1994 Journal of Petroleum Technology Editor, January Issue and 1994 Review Chairman

Society of Petroleum Engineers - Member since 1972, Environment Health and Safety Committee Member, 1993 Distinguished Lecturer, Co-chairman SPE/EPA Exploration & Production Environmental Conference, 1997, Chairman SPE Monograph Committee, Editor Monograph Volume 18 Henry L. Doherty Series, Environmental Engineering for Exploration and Production Activities

1993-94 Advisory Board - San Joaquin Valley Chapter, American Petroleum Institute

Stanford School of Earth Sciences, Stanford University - former Advisory Board and former National Fundraising Chairman

Member - Air and Waste Management Association, American Petroleum Institute, Association of Groundwater Scientists and Engineers, Central California Association of Power Producers, California Groundwater Association, California Independent Petroleum Association, California Living Museum, National Water Well Association and the Water Association of Kern County, Central California Association of Power Producers

Member at Large - Conservation Committee of California Oil and Gas Producers

Member - West Coast Advisory Group of the Petroleum Technology Transfer Council

Member - PTTC National Labs Partnership Work Group

The Council of One Hundred - California State University, Bakersfield

Future Bakersfield - Mayor's Action Team, Strategic Vision Plan

Women's Advisory Council - Girl Scouts, Joshua Tree Council

Graduate, Hill & Knowlton Media Training Seminar

Soroptimist Achievement Award, 1976 Outstanding Professional Woman, L. A. Area

SPECIAL AREAS OF EXPERTISE:

Regulatory Compliance:

Participates on an ongoing basis in regulatory reform programs both nationally and locally.

- Management of contracts where WZI acts as the client's representative in the coordination of business goals and permit conditions in large projects requiring interagency cooperation. This includes preparation of permit documents, technical support documents, public hearing representation and community relations.
- Provides strategic planning for compliance with regulations, the formulation of operations tracking protocols which improve agency/industry communication where permit conditions require a good understanding of a project.
- Working with regulatory agencies in the interpretation of "intent" of environmental regulations when applied to projects especially where Federal, State and local regulations are not clearly presented or have overlapping jurisdiction.
- Provides management direction on protocol design and implementation of environmental audits (site assessments, compliance audits, risk appraisals).
- Expert testimony in litigation involving groundwater contamination.
- Expert testimony and advise in litigation involving air emissions, health risk.

Petroleum:

Serves on the National Petroleum Council. Council advises, informs and makes recommendations to the Secretary of Energy with respect to matters submitted to the Council by the Secretary of Energy representing the views of the energy industry.

- Expert Witness Moss v. Venoco, Chevron et al. for Air Emissions, Due Diligence, Standard of Care
- Appointed by Congress to advise on the operation of the Naval Petroleum Reserve No.1 (Specific Expertise in Environmental Compliance)
- Over thirty years of oil and gas operations and reservoir engineering experience.
- Prepared numerous U. S. Securities Exchange Commission Reserves Appraisals and fair market valuations on oil and gas producing properties.
- Prepared numerous enhanced oil recovery development plans.
- Economic Analysis of business alternatives in oil/gas exploration and operations both domestically and internationally.

- Negotiated settlements regarding wastewater issues of independent refineries.
- Presentation to the National Electrical Generation Association regarding California Electrical Restructuring.

Power Generation:

- Kern County Electrical Advisory Committee member.
- California Independent Petroleum Association Oil Producers Electrical Project member.

PROFESSIONAL EXPERIENCE:

1986 - Present <u>President, Chief Executive Officer: WZI Inc.</u>

Defines and directs the overall management objectives of WZI Inc. Ms Wilson provides technical standards for all projects on an asneeded basis, to assure client satisfaction, monitors all projects for contract compliance and technical content.

WZI Inc. headquartered in Bakersfield, California. WZI Inc. is an environmental and consulting engineering company, which has achieved a reputation for high quality, successful project management. WZI is a State of California Verification Body for AB32 Greenhouse Gas Mandatory Reporting, Executive Order Number H-10-173. WZI offers professional and technical services in regulatory compliance (air, water, waste), geoscience, hydrology, site characterization, hazardous waste management, and environmental impact assessment. WZI offers its clients a uniquely high level of expertise, an innovative, technical approach and disciplined project management.

1982 - 1987 Partner: Evans, Carey & Crozier

Represented numerous clients in environmental matters related to regulatory compliance and reservoir engineering. Supervised geological and groundwater studies, performed subsurface engineering and design, and made alternative recommendations, all related to hazardous and non-hazardous waste injection facilities. Expertise has been utilized in obtaining the necessary permits required by EPA, DOHS, RWQCB and various county agencies. Conducted detailed environmental assessments of hazardous waste site selections, all of which meet the demands of CEQA, and were utilized in EIR preparation.

1979 - 1982 Consultant: Evans, Carey & Crozier

Represent Evans, Carey & Crozier with clients. Designed and implemented enhanced recovery and waste disposal programs including all permitting activities. Prepared property appraisals and evaluations.

1972 - 1979 Engineer: Texaco, Inc.

Initially, assisted in the evaluation of secondary recovery projects and pilot flood performance. Performed reservoir analysis, log interpretations and economic analyses. Based on this knowledge, was given the task of supervising all drilling and production activities for a major secondary recovery project in which she devised a new water entry survey technique. Studied the drilling potential in California, Nevada, and Alaska, and the development of several steam flood recovery projects. Asked to represent Texaco in unit negotiations, testify before government agencies and obtain all necessary permits. Also assisted in developing the Division's investment budget.

PUBLICATIONS:

- Englehardt, John, M.J. Wilson, et al., 2001, New Abandonment Technology New Materials and Placement Techniques, S.P.E. Paper No. 66496.
- Wilson, M.J. and J.D. Frederick, 1999, Editors, SPE Monograph Volume 18 Henry L. Doherty Series, Environmental Engineering for Exploration and Production Activities.
- Wilson, M. J. and S. C. Kiser, 1994, Transactional Environmental Assessments: Use in the Identification of Viable Enhanced Oil Recovery Projects, S.P.E./DOE Paper No. 27782.
- Wilson, M. J. and S. C. Kiser, 1993, Site Assessment Methods in Determination of Liability in Oil and Gas Property Acquisition and Divestiture, S.P.E. Paper No. 25834.
- Wilson, M. J. and J. D. Frederick, 1993, Particulate Emission Testing Methodologies as Applied to Natural Gas Fired Turbines, S.P.E. Paper No. 25945.
- Wilson, M. J. and S. G. Muir, 1992, A Critique of Selected Case Studies in Environmental Geophysics, S.P.E. Paper No. 23998.
- Kiser, S. C., M. J. Wilson and L. M. Bazeley, 1990, Oil Field Disposal Management Practices in Western Kern County, California in proceedings from First International Symposium on Oil and Gas Exploration and Production Waste Management Practices, New Orleans, Louisiana, p.677-688.
- Wilson, M. J., Kiser, S. C., E. J. Greenwood, R. N. Crozier, R. A. Crewdson, 1987, Oil Field Disposal Practices in the Hydrogeologic Setting of the Midway-Sunset and Buena Vista Oil Fields: A Review of Past Effects, Current Activities and Future Scenarios, American Association of Petroleum Geologists, Bull. V. 72, No. 3, p.394 Abs.
- Wilson, M. J. and S. C. Kiser, 1987, Proceedings of Hazmacon 1986 Conference April 29
 March 1, 1986, Anaheim, California, Synergistic Approach for Siting and Design for Injection of Hazardous Liquid Wastes: Case Study in Western San Joaquin Valley, Kern County, California, S.P.E. Paper No. 16327
- Wilson, M. J., 1979, The Santos: A Case History of Fractured Shale Development, S.P.E. Paper No. 7978.
- Wilson, M. J., 1974, A Young Engineer's Personal Look at the "Guidelines", S.P.E. Paper No. 4913.

Exhibit 2

Appendix D: Calculation of Emission Estimates and Reductions

OVERVIEW

A. TANK EMISSION CALCULATION

To determine the emission impact from the tank portion of the proposed regulation, staff first determined tank system count by district, using data from ARB's 2009 Oil and Gas Industry Survey (2009 Survey) to get a system count by district. For the purposes of this regulation, a tank system is considered a separator and the first crude and first water tanks tied to the separator. Staff used the separator counts in the ARB Survey as a proxy for the number of tank systems by facility per district. Staff then used Western States Petroleum Association and California Air Resources Board crude and water tank flash data to determine emission factors in metric tons per barrel of crude, water, and dry gas, produced water, for methane, volatile organic compounds (VOC), and Benzene, Toluene, Ethylbenzene, and Xylene (BTEX). The emission factors were then applied to system throughputs of crude, produced water, and dry gas, providing estimates of total methane, VOC, and BTEX emissions per system.

Staff used the estimated methane emissions by tank system to determine the number of systems that would be above the regulation's 10 metric ton per year (MT/yr) threshold for controls. Staff was then able to determine reductions assuming the 95% control efficiency in the regulation.

B. DETAILED EXPLANATION OF THE TANK EMISSION CALCULATION

Below is a detailed explanation of how staff calculated the emission impacts on oil and gas tanks from the proposed Oil and Gas GHG Regulation.

1. Determining number of systems

The foundation of the tank system count analysis is the 2009 Survey. First, staff used the information in the 2009 ARB Survey to determine the number of water and crude tanks related to crude and natural gas operations. However, the 2009 ARB Survey data did not contain any information on water tanks. Since the provisions are concerned only with the separator and first crude and first water tank, staff used the counts of separators as a proxy for tank systems. Using the 2009 Survey separator data, Staff determined 14 types of separators that represented the head of a system.

Separator Names used in Tank Emission Analysis

- Condensate
- Condensate Accumulator
- Condensate Tank
- Condensate Vessel

- Free Water Knockout
- Horizontal
- Horizontal Separator
- Horizontal Separators
- Natural Gasoline Bullet
- Oil Water Separator
- Separator
- Vertical Separator
- Wash Tank
- 3-Phase

Based on this approach, staff determined that there are 2785 tank systems. They also assumed that there is at least one water tank and one crude tank attached to the separators. The 2009 Survey data contains information regarding whether or not the separators had vapor recovery systems (VRS) or were uncontrolled. Staff assumed that if the separator was equipped with a VRS, then the subsequent water and crude tanks attached to the system were also equipped with a VRS, and that if a separator was uncontrolled (not equipped with a VRS), then the subsequent water and crude tanks attached to the system also were uncontrolled. There was one exception to this assumption.

Based on discussions with the San Joaquin Valley Air Pollution Control District (SJVAPCD), staff assumed all water tanks in the SJVAPCD are uncontrolled, even if the separator is controlled. Therefore, for the systems in the SJAPCD, it was assumed that all of the water tanks were uncontrolled, even if the separator associated with the water tank was equipped with a VRS. Table D-1 shows the system counts from the 2009 Survey.

Category	Count	All non-VRS systems
Systems	2785	1066
Companies	183	50
Facilities	731	523

Table D-1: System Counts

2. Emission Factor Development

To get emission factors for methane, VOCs, and BTEX per barrel of produced crude oil and per barrel of crude oil produced water, staff used

water tank flash data from Air Resources Board (ARB) testing¹ and crude and water tank flash data from Western States Petroleum Association (WSPA) tests². There were 21 crude produced water tank flash tests and 17 dry gas produced water tank flash tests used from the ARB dataset. There were approximately 188 crude oil and crude produced water tank flash tests used from the WSPA dataset.

a) Crude Oil Related Emission Factors Using WSPA Data

The WSPA crude oil flash data contained the following information:

- Crude Throughput (barrels per year (bbls/yr))
- Reid Vapor Pressure (pounds per square inch absolute (psia)) (not used in analysis)
- Crude Oil API gravity (not used in analysis)
- Flash Gas Molecular Weight (MW) (g per gram-mole (g/g-mole))
- Gas Oil Ratio (GOR) (standard cubic feet per barrel (scf/bbl))
- Methane (weight percent (wt%))
- CO2 (wt%)
- VOC C3-C10 (wt%)
- VOC C10+ (wt%)
- BTEX (wt%)

Example Calculation using WSPA data

Example Flash Data:

Crude Throughput	= 100,000 bbl/yr
GOR	= 1.5 scf/bbl
Flash Gas MW	= 30 g/g-mole
Methane	= 50 wt%
CO2	= 30 wt%
VOC C3-C10	= 15 wt%
VOC C10+	= 0.001 wt%
BTEX (wt%)	= 0.01 wt%

¹ Kuo, Jeff. 2011. Methane and Carbon Dioxide Emissions from California Crude Oil and Gas Operations, California State University, Fullerton, June 30, 2011.

² WSPA and ARB flash test data used in this analysis is included in the back of this appendix.

To get the amount of entrained gas in the oil produced, multiply crude throughput by the GOR:

Entrained gas = 100,000 bbl/yr x 1.5 scf/bbl = 150,000 scf/yr

Next use the Flash Gas MW to determine the amount of emissions in metric tons:

Where:

Base condition constant

= 4.22119e-05 g-mole/cm³ at 60 degrees F and 1 atm,

Emissions	= Flash Gas MW x Entrained gas x base condition constant x unit conversions
	= 30 g/g-mole x 150,000 scf/yr x 4.2219e-05 g-mole/cm ³ *28,317 cm ³ /ft ³ x 0.002203 lb/g x 0.005 tons/lb x 0.907 MT/ton
	= 8.06 MT/yr

To get the contribution of emissions by individual pollutant, multiply each pollutants weight percent as a percentage by the emissions:

Methane emissions	= 0.5 x 8.06 MT = 4.03 MT
BTEX emissions	= 0.0001 x 8.06 MT = 0.0008 MT

For VOC sum the weight percents of VOC C3-C10 and VOC C10+ then multiply by the emissions to get total VOC emissions:

To convert the emissions to an emission factor, divide each pollutant's emissions by the total crude throughput of the tank.

Methane Emission Factor	= 4.03MT/ 100,000 bbl = 4.03e-5 MT/bbl
BTEX Emission Factor	= 0.0008 MT / 100,000 bbl = 8e-9 MT/bbl
VOC Emission Factor	= 1.21 MT / 100,000bbl = 1.21e-5 MT/bbl

The WSPA water flash data contained the following information:

- Water Throughput (bbls/yr)
- Flash Gas MW (g/g-mole)

- Gas Water Ratio (GWR) (scf/bbl)
- Methane (wt%)
- CO2 (wt%)
- VOC C3-C10 (wt%)
- VOC C10+ (wt%)
- BTEX (wt%)

The calculation for the water tank emission factors is the same as the crude emission factor calculations above, except the water tank emission factors uses GWR instead of GOR and water throughput instead of crude throughput.

b) Crude Oil Related Emission Factors Using ARB Data

The calculation for developing the crude oil related emission factors using ARB data is nearly identical to the calculation using WSPA data. The only exception is that the ARB data was speciated by individual compound. So the individual VOCs and BTEX compounds had to be manually added together to create similar pollutant categories as the WSPA data.

c) Combined Crude Oil Related Emission Factors

The throughputs and the individual pollutant emissions were summed from the ARB and WSPA datasets and an overall emission factor was determined from the total of the summed datasets, as shown in Tables D-2 through D-7.

Table D-2: Crude Methane Emission Factor

Dataset	Crude Throughput (bbl/yr)	Methane (MT/yr)	Methane Emission Factor (MT/bbl)
ARB	N/A	N/A	
WSPA	96,376,935	5,910	
Total	96,376,935	5,910	6.13E-05

Table D-3: Crude VOC Emission Factor

Dataset	Crude Throughput (bbl/yr)	VOC (MT/yr)	VOC Emission Factor (MT/bbl)
ARB	N/A	N/A	
WSPA	96,376,935	5,097	
Total	96,376,935	5,097	5.29E-05

Table D-4: Crude BTEX Emission Factor

Dataset	Crude Throughput (bbl/yr)	BTEX (MT/yr)	BTEX Emission Factor (MT/bbl)
ARB	N/A	N/A	
WSPA	11,976,536	0.50	
Total	11,976,536	0.50	4.21E-08

Table D-5: Crude Produced Water Methane Emission Factor

Dataset	Water Throughput (bbl/yr)	Methane (MT/yr)	Methane Emission Factor (MT/bbl)
ARB	28,506,500	116	
WSPA	1,361,401,787	8,145	
Total	1,389,908,288	8,261	5.94E-06

Table D-6: Crude Produced Water VOC Emission Factor

Dataset	Water Throughput (bbl/yr)	VOC (MT/yr)	VOC Emission Factor (MT/bbl)
ARB	28,506,500	41	
WSPA	1,321,470,497	805	
Total	1,349,976,997	846	6.26E-07

Table D-7: Crude Produced Water BTEX Emission Factor

Dataset	Water Throughput (bbl/yr)	BTEX (MT/yr)	BTEX Emission Factor (MT/bbl)
ARB	23,031,500	2.68	
WSPA	10,047	0.0017	
Total	23,041,547	2.68	1.17E-07

d) Natural Gas Emission Factors

The ARB data also contained 19 flash tests on dry gas produced water. The dry gas produced water emission factors came from these 19 flash tests.

Dry Gas Produced Water Methane Emission Factor = 4.73e-05 MT/bbl Dry Gas Produced Water VOC Emission Factor = 6.59e-06 MT/bbl Dry Gas Produced Water BTEX Emission Factor = 6.51e-07 MT/bbl

3. Emission Estimates by System for All Systems

Staff used the emission factors above to estimate emissions from each tank system identified in the 2009 ARB Survey. In order to do so, throughput of crude, dry gas, crude oil produced water, and dry gas produced water is necessary.

The 2009 Survey contained throughput data for each separator. However, when staff compared the separator throughput with overall facility throughput, many survey respondents used their facility throughput as their separator throughput. In instances where a facility had multiple separators that represented system heads, this led to an overestimate of the system throughputs. This overestimate of the system throughputs led to an overestimate of the calculated emissions. In order to combat the prevalent issue of survey respondents using their facility throughput as their separator throughput, staff decided to divide the facility throughput by the number of separators that represented system heads at each facility. This gave each separator a proportion of the totally facility throughput. Staff used this method for every facility, even if the facility appeared to report its separator throughput correctly.

a) Crude Oil Produced Water

The 2009 Survey did not contain crude produced water data, but did contain crude throughput data. Staff used 2007 Division of Oil, Gas, and Geothermal Resources (DOGGR) statewide data on crude and produced water throughput to develop a ratio of water to crude³. The 2007 DOGGR statewide data showed that oil and condensate totals were approximately 243,000,000 barrels (bbls) and water totals were approximately 2,550,000 bbls. These totals show that the oil and condensate represent about 10 percent of the total water throughput, verifying staff's proposed ratio. As a result, staff used the following formula to determine crude oil produced water:

$$Facility Crude Oil Produced Water (bbls) \\ = \frac{Factilty Crude Throughput (bbls)}{0.10}$$

b) Dry Gas Produced Water

The 2009 Survey did not contain dry gas produced water data, but did contain dry gas throughput data. Staff used the 2007 DOGGR statewide data from dry gas counties (Butte, Colusa, Glenn, Humboldt, Madera, San Joaquin, Sutter, Tehama, and Yolo) to calculate a ratio of dry gas to dry gas produced water¹. The amount of dry gas for those counties was 22,048,095 thousand cubic feet (MCF) and the amount of dry gas produced water was 446,950 bbls. This leads to a ratio of 49,330 SCF of dry gas per barrel of produced water. As a result, staff used the following formula to determine dry gas oil produced water:

Factily Dry Gas Produced Water (bbls)
=
$$\frac{Factility Dry Gas Throughput (SCF)}{49,330 (\frac{SCF}{bbl})}$$

c) Methane, VOC and BTEX Emission Calculations

To calculate emissions from the tanks systems, Staff multiplied the system throughput by the emission factor

For example,

Crude throughput for System X

= 100,000 bbls

Water throughput for System X

³ DOGGR. 2008. 2007 Annual Report of the State Oil & Gas Supervisor, Publication no. PR06.

= 1,000,000 bbls Crude Methane Emissions = 100,000 bbls * 6.13E-5 MT/bbl = 6.13 MT Crude VOC Emissions = 100,000 bbls * 5.29E-05 MT/bbl = 5.29 MT Crude BTEX Emissions = 100,000 bbls * 4.21E-08 MT/bbl = 0.00421 MT Crude Water Methane Emissions = 1,000,000 bbls * 5.94E-6 MT/bbl = 5.94 MT Crude Water VOC Emissions = 1,000,000 bbls * 6.26E-07 MT/bbl = 0.626 MT Crude Water BTEX Emissions = 1,000,000 bbls * 1.17E-07 MT/bbl = 0.117 MT

If this system were uncontrolled, it would be considered subject to the regulation because the total methane emissions are above 10 MT (6.13 MT + 5.94 MT = 12.07 MT). This calculation is performed on every system at each facility to determine the number of systems that would be subject to the storage tank regulation. For dry gas systems, dry gas throughput was used instead of crude throughput to determine the methane emissions from the system.

d) Oxides of Nitrogen (NOx), Carbon Monoxide (CO), HYDROCARBON (HC), PARTICULATE MATTER (PM), and OXIDES OF SULFUR (SOx) EMISSION CALCULATIONS

In order to estimate emissions related to combustion from vapor recovery, Staff needed appropriate emission factors. Staff used emission factors from the United States Environmental Protection Agency (U.S. EPA) entitled, Emissions Factors & AP 42, Compilation of Air Pollutant Emission Factors for flares⁴⁵. Table D-8 shows the existing flare emissions factors.

⁴ U.S. EPA. 2016. Natural Gas Combustion. AP 42, Fifth Edition, Volume I.Chapter 1: External Combustion Sources.

⁵ U.S. EPA. 2016. Industrial Flares. AP 42, Fifth Edition, Volume I, Chapter 13: Miscellaneous Sources.

Pollutant	Emission Factor (Ib/10^6 scf)
NOx	68
СО	370
Hydrocarbons	140
CO2	120000
Lead	0.0005
N2O (Uncontrolled	2.2
N2O (low nox burner)	0.64
PM (Total)	7.6
PM10 (condensable)	5.7
PM2.5 (filterable)	1.9
SO2	0.6
TOC	11
Methane	2.3
VOC	5.5
Benzene	2.10E-03
Toluene	3.40E-03

Table D-8: Flare Emission Factors

For the low-NOx incinerator emission factors, staff used a combination of test data and manufacturer reported emission factors. For NOx, CO, and hydrocarbons, Staff used manufacturer reported emission factors⁶. For PM and SOx, manufacturer test data was used to determine emission factors for those pollutants⁷. For PM, the PM emissions were measured as PM10 in the actual test data. However, the manufacturer indicated that the PM10 test data included PM2.5 in the result. In order to get a PM2.5 and a PM10 emission factors and applied it to the low-NOx incinerator PM10 emission result. This gave a PM2.5 and a PM10 emission factors for the same pollutants. Table D-9 shows the low-NOx incinerator emission factors.

⁶ Aeron. 2015. Certified Ultra Low Emissions Burner, Sheets CEB 50 through CEB 1200:

⁷ Aeron 2011 – 2013. Summary of Test Results, low-NOx incinerator test data submitted to ARB.

	Emission Factor
Pollutant	(lb/10^6 scf)
NOx	18.00
СО	10.00
Hydrocarbons	5.00
PM Total	7.23
PM10	5.42
PM2.5	1.81
SOx	0.04

Table D-9: Low-NOx Incinerator Emission Factors

Once staff had the emission factors for both flares and low-NOx incinerators, the next step was to determine the amount of gas that was going to be flared/incinerated. From the 2009 Survey staff could determine what kind of VRS was on each system. For systems that had no VRS, it was assumed that a low-NOx incinerator would have to be installed to deal with the captured gas. For facilities that had existing flares for VRS, it was assumed that they would replace their smallest flare with a low-NOx incinerator and any gas that going to the replaced smallest flare plus the additional captured gas would now go to the low-NOx incinerator. For facilities that had other VRS disposal methods such as disposal wells, collection systems, or steam turbines, it was assumed that the additional gas that would be captured would be routed to those same disposal methods. From the 2009 Survey, staff determined that there were 26 systems that were uncontrolled. These 26 systems spanned 5 facilities. However, one of the facilities had systems that were spread miles apart. Therefore, it was determined for that one facility three flare replacements would need to occur to capture the non-VRS systems that were spread apart.

In addition to the non-VRS systems, staff had discussions with the SJVAPCD and discovered that almost all of the water tanks in the San Joaquin Valley were uncontrolled. Therefore, for this analysis, staff assumed all water tanks were uncontrolled in the SJVAPCD. From the 2009 Survey, staff determined that there were 291 systems spanning 17 facilities that needed VRS controls on their water tanks because their systems were above 10 MT of methane emissions. Of the 17 facilities, 7 facilities were using flares as VRS for their controlled systems. The other 10 facilities were assumed to route their additional captured water tank to their other methods of disposal.

The next step was to determine the emissions from the existing flares. The 2009 Survey contained the throughput of each flare. Therefore, staff just multiplied the emission factors in Table D-6 by the throughput of the smallest flare on each facility. For the non-VRS systems, the total throughput of the smallest flare on each facility was 33,508,028 standard cubic feet (SCF) of gas. For the non-VRS water tank systems the total throughput of the smallest flare on each facility was 147,601,681 SCF.

Now that a baseline of emissions had been established, the next step was to determine the amount of emission if the smallest flares were replaced with low-NOx incinerators. To do this, staff multiplied the existing smallest flare throughput with the low-NOx incinerator emission factors in Table D-9.

The next step was to determine the amount of additional gas that would be captured and sent to the low-NOx incinerator. Staff converted the amount of methane emissions estimated to be vented from the uncontrolled systems to gas. Staff assumed a methane composition of 78.8 percent.

Example of converting methane emissions to gas

Assumptions:

Methane Density = 0.0419 lb/ft^3

1 ton = 2000 lbs

1 Metric ton = 0.907 tons

Methane Mole Fraction 0.788

Convert 10 MT methane to gas:

$$\frac{10 \text{ MT CH4}}{0.907 \frac{\text{MT}}{\text{ton}}} \times 2000 \frac{\text{lbs}}{\text{ton}} \times \frac{1}{0.0419 \frac{\text{lb}}{\text{ft3}}} \times \frac{1}{0.788} = 667,855 \text{ ft3}$$

The total amount of additional gas captured from the non-VRS systems was calculated to be 31,074,810 SCF. The total amount of additional captured from the the non-VRS water tanks was calculated to be 292,184,404. The total additional gas captured was calculated to be 323,259,214 SCF. Multiply the total additional gas captured by the emission factors in Table D-9.

To determine the emission impacts of NOx, CO, HC, PM, and SOx from the combustion of the captured gas, staff added the emissions from the existing gas using the low-NOx incinerator and the emissions

from the additional gas sent to the low-NOx incinerator and subtract the emissions from the existing flare. Table D-10 shows the total emissions impact from non-methane pollutants.

Pollutant	Non- VRS Systems Emissions (tons)	Non-VRS Water Tank Emissions (tons)	Total Emissions (tons)
NOx	-0.56	-1.06	-1.62
СО	-5.88	-25.11	-30.98
Hydrocarbons	-2.18	-9.23	-11.42
PM Total	0.11	1.03	1.13
PM10	0.08	0.77	0.85
PM2.5	0.03	0.26	0.28
SOx	-0.0088	-0.0355	-0.0442

Table D-10: Total Emission Impact From Non-Methane Pollutants

e) Natural Gas Speciation

Throughout the emissions analysis staff assumed that all gas was 78.8 percent methane. Staff used a speciation for gas found in a August 2009 API Compendium of Greenhouse Gas Methodologies⁸ and ratioed up the species to reflect a 78.8 percent composition. This ratioed up speciation was applied to the methane emission reductions from each major component of the regulation to determine the reductions from VOCs, HCs, Benzene, Toluene, Ethyl-Benzene and Xylenes. Table D-11 shows the speciation fraction used in the July 1996 API study and the adjusted speciation fraction ratioed up to 78.8 percent that was used in this analysis.

⁸ API. 2009. Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009.

	API 2009	Average
	Average	Speciation
	Speciation	Ratioed to
Pollutant	Fraction	78.8
Methane	0.766	0.788
Non-		
Methane	0.2342	0.212
VOC	0.144	0.130350128
C6+	0.010232	0.009262101
Benzene	0.002482	0.002246729
Toluene	0.001158	0.001048232
Ethyl-		
Benzene	0.000174	0.000157506
Xylenes	0.000898	0.000812878

Table D-11: Gas Speciation

f) NOx Emissions from Well stimulation Circulation Tanks

Staff calculated NOx emissions based on the amount of methane being captured from requiring vapor controls on well stimulation circulation tanks. In Appendix B, it is estimated that the vapor controls on well stimulation circulation tanks will result in 68 tons of methane reduction a year. This is equivalent to approximately 4,525,000 SCF of gas. Multiply this volume of gas by the NOx emission factor in Table D-9 and you get 81.45 pounds of NOx or 0.041 tons of NOx per year.

4. VOC to Methane Equivalency Analysis

The average VOC speciation fraction of natural gas from API 2009 is 0.13 (See Table D-11). Six tons of VOC is equivalent to approximately 46 tons of total emissions. The assumed speciation of methane in natural gas is 0.788 throughout this document. Therefore, 6 tons of VOC is equivalent to 36 tons of methane.

 $\frac{VOC \ tons}{VOC \ spectiaon} = \frac{6 \ tons}{0.13} = 46 \ tons \ of \ total \ emissions$

total emissions tons * methane speciation = 46 tons * 0.788 = 36 tons of methane

5. Throughput Threshold Analysis

In order to reduce the amount of unnecessary flash testing for small oil and gas operators, staff analyzed flash testing data and system throughput data to determine throughput threshold that would exempt facilities below the threshold from having to do flash test on their systems. In order to bracket the problem staff looked at the highest GOR and the highest GWR from the ARB and WSPA flash test data and applied them to the system throughputs at each facility. Staff then looked at which throughput levels equaled 10 MT of methane. The throughput levels for systems at 10 MT of methane were 5.5 barrels of oil per day (BOPD) and 367 barrels of water per day (BWPD) for crude systems and 208 BWPD for dry gas systems. This established an upper end bracket for a crude throughput and a water throughput that would virtually ensure that no system that would be exempted from flash testing would exceed 10 MT of methane. Once the upper end bracket was established, staff started easing the thresholds upwards to see how high the thresholds could go while still be effective at preventing excess emissions. Staff eventually pushed the crude threshold up to 50 BOPD and were considering a crude only threshold limit for crude systems. So staff decided to test the 50 BOPD threshold on the WSPA flash data. At 50 BOPD there were 4 WSPA tanks systems that would exceed 10 MT of methane and not be required to flash test. So staff decided to reinstitute the water throughput threshold. However, staff wanted to make the regulation simpler by having one set of threshold limits that applied to both crude and dry gas systems, instead of separate threshold limits for each. Since staff pushed the crude throughput threshold limit up to 50 BOPD, it was decided that the rounded dry gas water threshold upper limit should be used for the water threshold. So the crude throughput threshold limit of 50 BOPD and the water throughput threshold limit of 200 BWPD were settled upon. Staff ran some analysis to see the effects of these new threshold limits. The 50 BOPD and the 200 BWPD threshold limits captured every system in the 2009 Survey and the WSPA flash data that would exceed 10 MT of methane with a compliance margin in case of high flash test data. The 50 BOPD and the 200 BWPD limits would exempt about 1500 out of approximately 2600 systems from flash testing. Whereas the 50 BOPD only limit would exempt 1700 out of 2600 systems.

Table D-12: ARB Fullerton Crude Water Data

Crude Oil Produce d Water	Crude Water Tanks Syste m 1	Crude Water Tanks Syste m 2	Crude Water Tanks Syste m 3	Crude Water Tanks Syste m 4	Crude Water Tanks Syste m 5	Crude Water Tanks Syste m 6	Crude Water Tanks Syste m 7	Crude Water Tanks Syste m 8	Crude Water Tanks Syste m 9	Crude Water Tanks Syste m 10	Crude Water Tanks Syste m 11	Crude Water Tanks Syste m 12	Crude Water Tanks Syste m 13	Crude Water Tanks Syste m 14	Crude Water Tanks Syste m 15	Crude Water Tanks Syste m 16	Crude Water Tanks Syste m 17	Crude Water Tanks Syste m 18	Crude Water Tanks Syste m 19	Crude Water Tanks Syste m 20	Crude Water Tanks Syste m 21	Crude Water Tanks Syste m 22
Water Sample Associati on	Crude	Crude Oil	Crude Oil	Crude Oil	Crude Oil	Crude Oil	Crude Oil	Crude Oil	Crude Oil	Crude Oil	Crude Oil	Crude Oil	Crude Oil	Crude Oil	Crude Oil							
Date Sampled	2/1/20 11	3/30/2 011	3/30/2 011	3/30/2 011	2/10/2 011	2/1/20 11	2/1/20 11	2/1/20 11	7/19/2 010	7/19/2 010	6/13/2 011	6/13/2 011	6/14/2 011	8/3/20 11	8/3/20 11	7/29/2 011	7/29/2 011	8/1/20 11	8/1/20 11	8/2/20 11	8/2/20 11	8/2/20 11
Date Analyzed	3/3/20 11	4/7/20 11	4/7/20 11	4/6/20 11	3/7/20 11	3/3/20 11	3/3/20 11	3/3/20 11	7/29/2 010	7/29/2 010	9/14/2 011	9/13/2 011	9/14/2 011	9/13/2 011	9/13/2 011	9/14/2 011	9/14/2 011	9/14/2 011	9/13/2 011	9/13/2 011	9/13/2 011	9/14/2 011
Job Number	J1122 0	J1187 0	J1187 0	J1186 9	J1121 8	J1121 7	J1122 1	J1122 1	J0425 6	J0425 5	J1491 3	J1491 0	011		J1490 5	J1490 3	J1490 2	J1490 9	J1491 1	J1490 8	J1491 2	J1490 0
API Gravity of Associat ed Crude	26.46	16.5	13	15	32	32	19.11	19.11	24.22	36.57	15	15.9	19.8	15.5	12.91	17.47	17.13	11	11	12	14.08	12
Air District	SBAP CD	SJV	SJV	SJV	SCAQ MD	SCAQ MD	SCAQ MD	SCAQ MD	SJV	SJV	SJV	SJV	SJV	SJV	SJV	SCAQ MD	SCAQ MD	SJV	SJV	SJV	SCAQ MD	SJV
Sample Pressure (psig)		22	30	34	100	17	142	140	60	48	40	40	27	49	45	80	90	40	50	30	8	60
Sample Temperat ure (deg F)	70	78	68	180	102	100	137	131	110	N/A	152	70	70	110	180	69	69	220	160	240	218	215
Gas- Water- Ratio (ft^3/bbl)	0.39	0.94	1.29	0.49	1.18	0.44	1.32	1.20	0.54	0.59	1.84	1.00	0.34	0.17	0.66	1.55	1.21	0.48	0.81	0.23	0.03	0.30
Base Condition s	14.65	14.65	14.65	14.65	14.65	14.65	14.65	14.65	14.73	14.73	14.73	14.73	14.73	14.73	14.73	14.73	14.73	14.73	14.73	14.73	14.73	14.73
(Flashed to)	PSI & 60°F																					
Throughp ut (bbl/day)	7	1,000	75	1,000	18	800	1,200	6,500	6,000	4,500	207	924	1,298	2	3,663	1,204	1,742	3,680	1,380	17,00 0	10,90 0	15,00 0
Chromat ograph Compou nds	Wt %																					
Nitrogen	8.46	0	0	0	0.269	2.34	0	0.199	7.326	6.818	0	0	0.121	0	0	0	0	0	1.029	0	0	0.542
Carbon Dioxide	46.99 7	88.82	91.39 4	84.15 2	24.62 1	15.00 9	47.36 3	42.83 9	44.87 4	23.60 1	92.32 5	88.75 7	54.98 7	31.61 3	86.70 5	63.26 6	65.57 8	81.42 1	84.86 9	80.07 3	77.52	78.12 2
Methane	16.23 7	8.887	6.231	6.725	45.38 4	26.84 3	41.45 6	50.06 9	31.52 2	11.23 6	5.943	7.422	28.50 1	62.80 3	10.53 9	27.37	29.77 4	12.87 5	5.829	12.61 6	8.972	20.05
Ethane	2.883	0.063	0.764	0.353	11.03	11.87 1	2.246	2.803	5.121	16.65 6	0.885	0.723	2.288	0.374	0.461	1.779	1.244	0.082	0.313	0.348	0.437	0.576
Propane	2.809	0.032	0.025	0.142	10.43 4	18.55 7	1.713	0.997	3.003	20.85 4	0.396	0.105	4.92	0.079	0.079	0.916	0.727	0.983	5.057	1.203	0.253	0.295

Crude Oil Produce d Water	Crude Water Tanks Syste m 1	Crude Water Tanks Syste m 2	Crude Water Tanks Syste m 3	Crude Water Tanks Syste m 4	Crude Water Tanks Syste m 5	Crude Water Tanks Syste m 6	Crude Water Tanks Syste m 7	Crude Water Tanks Syste m 8	Crude Water Tanks Syste m 9	Crude Water Tanks Syste m 10	Crude Water Tanks Syste m 11	Crude Water Tanks Syste m 12	Crude Water Tanks Syste m 13	Crude Water Tanks Syste m 14	Crude Water Tanks Syste m 15	Crude Water Tanks Syste m 16	Crude Water Tanks Syste m 17	Crude Water Tanks Syste m 18	Crude Water Tanks Syste m 19	Crude Water Tanks Syste m 20	Crude Water Tanks Syste m 21	Crude Water Tanks Syste m 22
Isobutane	0.591	0.008	0.012	0.055	0.946	4.345	0.964	0.396	0.509	2.763	0.086	0.027	1.526	0.052	0.009	0.299	0.178	0.008	0.01	0.035	0.045	0
n-Butane	2.249	0.023	0.039	0.19	2.952	8.565	1.683	0.547	1.407	8.227	0.134	0.062	2.286	0.087	0.005	0.684	0.367	0.263	0.056	0.156	0.089	0.286
2,2 Dimethyl propane	0.741	0.009	0.022	0.048	0.098	0	0.126	0.068	0	0.083	0	0.009	0.056	0.02	0.006	0.031	0.04	0.062	0.013	0.021	0.055	0
Isopentan e	0.907	0.049	0.042	0.141	0.485	3.105	1.113	0.203	0.676	2.012	0	0.02	0.869	0.02	0.006	0.297	0.114	0.05	0.005	0.021	0.055	0
n- Pentane	1.042	0.019	0.045	0.229	0.431	2.516	0.898	0.135	0.627	1.78	0	0.006	0.666	0.02	0.006	0.193	0.032	0.05	0.013	0.086	0.027	0
2,2 Dimethyl butane	0.297	0.002	0.002	0.008	0.007	0.071	0.06	0.011	0.037	0.039	0.002	0.002	0.029	0.045	0.023	0.026	0.015	0.014	0.002	0.021	0.119	0
Cyclopen tane	0.108	0.009	0.005	0.026	0.344	0.37	0.06	0.057	0.146	0.083	0.014	0.03	0.049	0.119	0.058	0.042	0.039	0.047	0.004	0.03	0.407	0
2,3 Dimethyl butane	0.454	0.007	0.013	0.074	0.014	0.079	0.063	0.026	0.05	0.374	0.004	0.02	0.052	0.04	0.041	0.088	0.036	0.019	0.004	0.016	0.066	0
2 Methylpe ntane	1.568	0.121	0.115	0.594	0.131	0.59	0.331	0.059	0.387	0.428	0.015	0.197	0.32	0.174	0	0.128	0.038	0.084	0.03	0.089	0.213	0
3 Methylpe ntane	1.293	0.182	0.171	0.832	0.124	0.375	0.204	0.059	0.365	0.328	0.011	0.309	0.259	0.15	0	0.151	0.062	0.11	0.046	0.098	0.166	0
n-Hexane	1.602	0.713	0.569	2.775	0.227	0.675	0.394	0.066	1.269	0.865	0.022	1.172	0.729	0.344	0.09	0.233	0.071	0.296	0.176	0.226	0.517	0
Methylcy clopentan e	0.665	0.136	0.125	0.661	0.437	0.696	0.176	0.136	0.459	0.394	0.019	0.285	0.225	0.051	0	0.28	0.121	0.152	0.055	0.114	0	0
Benzene	0.052	0.018	0.006	0.042	0.535	0.532	0.051	0.05	0.398	1.685	0.008	0.004	0.029	0.158	0.056	0.023	0.038	0.056	0.012	0.199	0.386	0
Cyclohex ane	0.44	0.145	0.139	0.821	0.208	0.476	0.241	0.093	0.544	0.258	0.019	0.391	0.264	0.04	0	0.283	0.15	0.019	0.011	0.066	1.033	0
2- Methylhe xane	0.575	0.008	0.005	0.066	0.025	0.119	0.066	0.021	0.133	0.133	0.003	0.02	0.08	0.033	0	0.033	0.007	0.017	0.003	0.024	0.191	0
3- Methylhe	0.64	0.008	0.008	0.064	0.029	0.129	0.058	0.021	0.133	0.133	0.005	0.01	0.09	0.104	0	0.063	0.014	0.031	0.005	0.03	0.2	0
2,2,4 Trimethyl			0.008							0.133												
Other	0	0		0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0
C7's n-	1.8	0.289	0.095 0.01	0.437 0.14	0.196	0.51	0.158	0.38	0.281 0.18	0.254 0.215	0.015	0.207	0.239	1.049 0.071	0.09	0.746	0.211	0.366	0.15	0.43	1.546 0.144	0
Heptane Methylcy clohexan	1.105			-		0.228					0.005		0.141		0.038			0.019	0.02	0.214		
e	1.072	0.023	0.015	0.326	0.134	0.44	0.194	0.075	0.127	0.149	0.012	0.025	0.197	0.203	0.071	0.321	0.084	0.079	0.067	0.428	0.842	0
Toluene Other	0.098	0.012	0.007	0.097	0.368	0.425	0.082	0.059	0.096	0.307	0.005	0.012	0.052	0.208	0.138	0.012	0.032	0.066	0.077	0.579	1.117	0
C8's	2.345	0.075	0.069	0.434	0.123	0.454	0.09	0.221	0.194	0.202	0.017	0.031	0.299	0.409	0.1	1.294	0.363	0.192	0.072	0.681	1.285	0
n-Octane Ethylbenz	0.509	0.012	0.006	0.084	0.014	0.06	0.013	0.019	0.049	0.042	0.003	0.006	0.065	0.107	0.061	0.008	0.031	0.022	0.02	0.22	0.158	0
	0.051	0.008	0.005	0.026	0.031	0.028	0.016	0.027	0.019	0.003	0.003	0.005	0.021	0.125	0.028	0.077	0.069	0.035	0.016	0.055	0.291	0

D-19

Crude Oil Produce d Water	Crude Water Tanks Syste m 1	Crude Water Tanks Syste m 2	Crude Water Tanks Syste m 3	Crude Water Tanks Syste m 4	Crude Water Tanks Syste m 5	Crude Water Tanks Syste m 6	Crude Water Tanks Syste m 7	Crude Water Tanks Syste m 8	Crude Water Tanks Syste m 9	Crude Water Tanks Syste m 10	Crude Water Tanks Syste m 11	Crude Water Tanks Syste m 12	Crude Water Tanks Syste m 13	Crude Water Tanks Syste m 14	Crude Water Tanks Syste m 15	Crude Water Tanks Syste m 16	Crude Water Tanks Syste m 17	Crude Water Tanks Syste m 18	Crude Water Tanks Syste m 19	Crude Water Tanks Syste m 20	Crude Water Tanks Syste m 21	Crude Water Tanks Syste m 22
M&P																						
Xylenes	0.101	0.017	0.003	0.044	0.083	0.087	0.033	0.036	0.015	0.018	0.003	0.011	0.082	0.264	0.182	0.042	0.029	0.05	0.099	0.377	0.724	0
O-Xylene Other	0.027	0.006	0	0.016	0.031	0.024	0.008	0.009	0.008	0.003	0.003	0.003	0.021	0.08	0.054	0.039	0.018	0.024	0.024	0.086	0.296	0
C9's	1.333	0.043	0.038	0.25	0.042	0.133	0.015	0.091	0.036	0.053	0.003	0.019	0.131	0.142	0.125	0.799	0.278	0.101	0.057	0.414	0.904	0
n-Nonane	0.266	0.013	0	0.034	0.011	0.017	0.005	0.011	0.009	0.004	0	0.007	0.026	0.127	0.103	0.021	0.004	0.025	0.019	0.132	0.234	0
Other C10's	0.708	0.037	0.011	0.066	0.058	0.056	0.011	0.048	0	0	0.007	0.018	0.189	0.365	0.302	0.349	0.18	0.129	0.085	0.478	1.015	0
n-Decane	0.215	0.007	0	0.007	0.012	0.009	0	0.048	0	0	0.004	0.004	0.019	0.181	0.129	0	0.005	0.024	0.011	0.1	0.193	0
Undecan																						
es (11)	0.03	0.012 99.82	0.008 99.99	0.024 99.98	0.038 99.91	0.064 99.79	0.024	0.091	0	0	0.008 99.97	0.004 99.93	0.172	0.327 99.98	0.039 99.54	0.083 99.99	0.042 99.99	0.071 97.84	0.026 98.28	0.02 99.68	0.432 99.93	0 99.87
Total	7	3	9	3	6	8	100	100	100	100	9	1	100	4	4	9	4	23	5	6	2	4
Onesitie																						
Specific Gravity	1.241	1.333	1.383	1.421	0.841	1.056	0.894	0.814	0.965	1.235	1.381	1.365	1.037	0.737	1.297	1.052	1.009	1.252	1.38	1.282	1.408	1.126
Molecular Weight																						
(g/g-	05 74	00.40	00.05	40.0	04.00	00.07	05.0	00.40	07.04	05 47	00.70	00.04	00.0	04.00	07.4	00.00	00.44	00.00	00.74	00.00	10.10	00.40
mole)	35.71	38.42	39.85	40.9	24.26	30.37	25.8	23.49	27.84	35.47	39.79	39.34	29.9	21.28	37.4	30.32	29.11	36.08	39.74	36.92	40.49	32.48
Gas Volume Measure d																						
Throughp ut (bbl/day)	7	1,000	75	1,000	18	800	1,200	6,500	6,000	4,500	207	924	1,298	2	3,663	1,204	1,742	3,680	1,380	17,00 0	10,90 0	15,00 0
Gas- Water- Ratio (ft^3/bbl)	0.39	0.94	1.29	0.49	1.18	0.44	1.32	1.2	0.54	0.59	1.84	1	0.34	0.17	0.66	1.55	1.21	0.48	0.81	0.23	0.03	0.3
Cubic	0.00				1.10									0.17								
Feet per Year	996	343,1 00	35,31 4	178,8 50	7,753	128,4 80	578,1 60	2,847, 000	1,182, 600	969,0 75	139,0 21	337,2 60	161,0 82	124	882,4 17	681,1 63	769,3 54	644,7 36	407,9 97	1,427, 150	119,3 55	1,642, 500
Vapor Recovery																						
System	??	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Convert Volume to Tons																						
MW Sample																						
Gas (g/g- mole)	35.71	38.42	39.85	40.90	24.26	30.37	25.80	23.49	27.84	35.47	39.79	39.34	29.90	21.28	37.40	30.32	29.11	36.08	39.74	36.92	40.49	32.48
Cubic		343,1	35,31	178,8		128,4	578,1	2,847,	1,182,	969,0	139,0	337,2	161,0		882,4	681,1	769,3	644,7	407,9	1,427,	119,3	1,642,
Feet Year Cm ³ per	996	00	4	50	7,753	80	60	000	600	75	21	60	82	124	17	63	54	36	97	150	55	500
Ft^3	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317
Base Condition	4.221 19E-																					
2_0	0																					

D-20

Crude Oil Produce d Water	Crude Water Tanks Syste m 1	Crude Water Tanks Syste m 2	Crude Water Tanks Syste m 3	Crude Water Tanks Syste m 4	Crude Water Tanks Syste m 5	Crude Water Tanks Syste m 6	Crude Water Tanks Syste m 7	Crude Water Tanks Syste m 8	Crude Water Tanks Syste m 9	Crude Water Tanks Syste m 10	Crude Water Tanks Syste m 11	Crude Water Tanks Syste m 12	Crude Water Tanks Syste m 13	Crude Water Tanks Syste m 14	Crude Water Tanks Syste m 15	Crude Water Tanks Syste m 16	Crude Water Tanks Syste m 17	Crude Water Tanks Syste m 18	Crude Water Tanks Syste m 19	Crude Water Tanks Syste m 20	Crude Water Tanks Syste m 21	Crude Water Tanks Syste m 22
Constant (g- mole/cm^ 3)	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05	05
Convert grams to pounds	0.002 20264 3																					
Convert pounds to tons	0.000 50																					
Tons/Yea r (total sample)	0.046 84267 6	17.35 29937 4	1.852 54384 5	9.629 60746 2	0.247 59080 1	5.136 61069 2	19.63 64998 8	88.03 73204 1	43.34 14500 5	45.24 96172 4	7.282 01054 7	17.46 60831 3	6.340 36111 6	0.003 47648	43.44 51851 5	27.18 79572 3	29.48 25417 7	30.62 27917 5	21.34 42630 3	69.36 29644 4	6.361 86904 9	70.22 92014 7
MT/Year (total sample)	0.042 49496	15.74 23711 2	1.680 59950 6	8.735 83294 2	0.224 61059 6	4.659 85483 5	17.81 39330 4	79.86 61136 3	39.31 87020 9	41.04 97622 5	6.606 12884 5	15.84 49640 8	5.751 87885	0.003 15381	39.41 2809	24.66 44999 1	26.74 61119 9	27.78 05293 7	19.36 31897	62.92 50228 6	5.771 39051 9	63.71 08598 8
Emissio ns Calculati ons																						
Sample Pressure (psig)	0	22	30	34	100	17	142	140	60	48	40	40	27	49	45	80	90	40	50	30	8	60
Gas- Water- Ratio (ft^3/bbl)	0.39	0.94	1.29	0.49	1.18	0.44	1.32	1.2	0.54	0.59	1.84	1	0.34	0.17	0.66	1.55	1.21	0.48	0.81	0.23	0.03	0.3
Methane																						
WT% CH4	16.23 7	8.887	6.231	6.725	45.38 4	26.84 3	41.45 6	50.06 9	31.52 2	11.23 6	5.943	7.422	28.50 1	62.80 3	10.53 9	27.37	29.77 4	12.87 5	5.829	12.61 6	8.972	20.05 3
WT Fraction CH4	0.162 37	0.088 87	0.062	0.067	0.453 84	0.268 43	0.414 56	0.500 69	0.315	0.112 36	0.059	0.074	0.285 01	0.628 03	0.105	0.273	0.297 74	0.128 75	0.058	0.126 16	0.089	0.200 53
MT/Year CO2e (uncontro Iled)	0.145	29.38 0	2.199	12.33 7	2.141	26.26 8	155.0 84	839.7 51	260.2 75	96.85 9	8.245	24.69 6	34.42 6	0.042	87.22 8	141.7 64	167.2 31	75.11 2	23.70 2	166.7 11	10.87 4	268.2 95
MT/Barrel (uncontro lled)	0.000 06	0.000 08	0.000 08	0.000 03	0.000 33	0.000 09	0.000 35	0.000 35	0.000 12	0.000 06	0.000 11	0.000 07	0.000 07	0.000 06	0.000 07	0.000 32	0.000 26	0.000 06	0.000 05	0.000 03	0.000 00	0.000 05
MT/Year CO2e (controlle d 95%)	0.007	1.469	0.110	0.617	0.107	1.313	7.754	41.98 8	13.01 4	4.843	0.412	1.235	1.721	0.002	4.361	7.088	8.362	3.756	1.185	8.336	0.544	13.41 5
MT/Barrel (controlle d 95%)	0.000 00	0.000	0.000 00	0.000 00	0.000 02	0.000 00	0.000 02	0.000 02	0.000 01	0.000	0.000 01	0.000 00	0.000 00	0.000 00	0.000 00	0.000 02	0.000 01	0.000 00	0.000 00	0.000 00	0.000 00	0.000 00
Carbon Dioxide																						
WT% D-2	46.99	88.82	91.39	84.15	24.62	15.00	47.36	42.83	44.87	23.60	92.32	88.75	54.98	31.61	86.70	63.26	65.57	81.42	84.86	80.07	77.52	78.12

D-21
Crude Oil Produce d Water	Crude Water Tanks Syste m 1	Crude Water Tanks Syste m 2	Crude Water Tanks Syste m 3	Crude Water Tanks Syste m 4	Crude Water Tanks Syste m 5	Crude Water Tanks Syste m 6	Crude Water Tanks Syste m 7	Crude Water Tanks Syste m 8	Crude Water Tanks Syste m 9	Crude Water Tanks Syste m 10	Crude Water Tanks Syste m 11	Crude Water Tanks Syste m 12	Crude Water Tanks Syste m 13	Crude Water Tanks Syste m 14	Crude Water Tanks Syste m 15	Crude Water Tanks Syste m 16	Crude Water Tanks Syste m 17	Crude Water Tanks Syste m 18	Crude Water Tanks Syste m 19	Crude Water Tanks Syste m 20	Crude Water Tanks Syste m 21	Crude Water Tanks Syste m 22
CO2	7		4	2	1	9	3	9	4	1	5	7	7	3	5	6	8	1	9	3		2
WT Fraction	0.469	0.888	0.913	0.841	0.246	0.150	0.473	0.428	0.448	0.236	0.923	0.887	0.549	0.316	0.867	0.632	0.655	0.814	0.848	0.800	0.775	0.781
CO2	0.409 97	0.000	94	52	21	0.150	63	0.428 39	0.448 74	0.230	0.923	0.887 57	0.349 87	13	0.807	66	0.033 78	21	0.848 69	0.800 73	0.773	22
MT/Year CO2																						
(uncontro		13.98						34.21	17.64			14.06			34.17	15.60	17.54	22.61	16.43	50.38	= .	49.77
lled) MT/Barrel	0.020	2	1.536	7.351	0.055	0.699	8.437	4	4	9.688	6.099	4	3.163	0.001	3	4	0	9	3	6	4.474	2
(uncontro lled)	0.000 00782	0.000 03831	0.000 05611	0.000 02014	0.000 00842	0.000 00240	0.000 01926	0.000 01442	0.000 00806	0.000 00590	0.000 08072	0.000 04170	0.000 00668	0.000 00137	0.000 02556	0.000 03551	0.000 02759	0.000 01684	0.000 03263	0.000 00812	0.000 00112	0.000 00909
MT/Year	00782	03631	03011	02014	00042	00240	01920	01442	00808	00590	06072	04170	00000	00137	02556	03551	02759	01004	03203	00012	00112	00909
CO2e (controlle																						
d 95%)	0.001	0.699	0.077	0.368	0.003	0.035	0.422	1.711	0.882	0.484	0.305	0.703	0.158	0.000	1.709	0.780	0.877	1.131	0.822	2.519	0.224	2.489
MT/Barrel (controlle	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
d 95%)	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
MTCO2e/ Barrel Uncontr olled	0.000 1	0.000 1	0.000 1	0.000 1	0.000 3	0.000 1	0.000 4	0.000 4	0.000 1	0.000 1	0.000 2	0.000 1	0.000 1	0.000 1	0.000 1	0.000 4	0.000 3	0.000 1	0.000 1	0.000 0	0.000 0	0.000 1
MTCO2e/ Barrel																						
Controlle d 95%	0.000 00	0.000 01	0.000 01	0.000 00	0.000 02	0.000 00	0.000 02	0.000 02	0.000 01	0.000 00	0.000 01	0.000 01	0.000 00	0.000 00	0.000 00	0.000 02	0.000 01	0.000 00	0.000 00	0.000 00	0.000 00	0.000 00
VOCs Measure d																						
WT% C3- C9	24.47 4	1.984	1.591	8.622	18.49	43.58 9	8.895	3.892	11.14 8	41.68 5	0.807	2.996	13.69 7	4.194	1.266	7.131	3.167	3.215	6.104	5.919	11.12 9	0.581
WT	0.044					0.405							0.400	0.044					0.004			
Fraction C3-C9	0.244 74	0.019 84	0.015 91	0.086 22	0.184 9	0.435 89	0.088 95	0.038 92	0.111 48	0.416 85	0.008 07	0.029 96	0.136 97	0.041 94	0.012 66	0.071 31	0.031 67	0.032 15	0.061 04	0.059 19	0.111 29	0.005 81
Tons/Yea r C3-C9																						
(uncontro	0.044	0.044	0.000	0.000	0.040	0.000	4 7 47	2 400	4 000	18.86	0.050	0.500	0.000	0.000	0.550	1 000	0.004	0.005	1 000	4.400	0 700	0.400
lled) Tons VOC/BB	0.011	0.344	0.029	0.830	0.046	2.239	1.747	3.426	4.832	2	0.059	0.523	0.868	0.000	0.550	1.939	0.934	0.985	1.303	4.106	0.708	0.408
L Uncontr olled	0.000 004	0.000 001	0.000 001	0.000 002	0.000 007	0.000 008	0.000 004	0.000 001	0.000 002	0.000 011	0.000 001	0.000 002	0.000 002	0.000 000	0.000 000	0.000 004	0.000 001	0.000 001	0.000 003	0.000 001	0.000 000	0.000
Tons/Yea																						
(controlle d)	0.001	0.017	0.001	0.042	0.002	0.112	0.087	0.171	0.242	0.943	0.003	0.026	0.043	0.000	0.028	0.097	0.047	0.049	0.065	0.205	0.035	0.020
Tons VOC/BB L																						
Controlle d	0.000 0002	0.000 0000	0.000 0001	0.000 0001	0.000 0003	0.000 0004	0.000 0002	0.000 0001	0.000 0001	0.000 001	0.000 000											

D-22

Crude Oil Produce d Water	Crude Water Tanks Syste m 1	Crude Water Tanks Syste m 2	Crude Water Tanks Syste m 3	Crude Water Tanks Syste m 4	Crude Water Tanks Syste m 5	Crude Water Tanks Syste m 6	Crude Water Tanks Syste m 7	Crude Water Tanks Syste m 8	Crude Water Tanks Syste m 9	Crude Water Tanks Syste m 10	Crude Water Tanks Syste m 11	Crude Water Tanks Syste m 12	Crude Water Tanks Syste m 13	Crude Water Tanks Syste m 14	Crude Water Tanks Syste m 15	Crude Water Tanks Syste m 16	Crude Water Tanks Syste m 17	Crude Water Tanks Syste m 18	Crude Water Tanks Syste m 19	Crude Water Tanks Syste m 20	Crude Water Tanks Syste m 21	Crude Water Tanks Syste m 22

Table D-13: ARB Fullerton DG Water Data

Dry Gas Produced Water	Dry Gas Water Tanks System 23	Dry Gas Water Tanks System 24	Dry Gas Water Tanks System 25	Dry Gas Water Tanks System 26	Dry Gas Water Tanks System 27	Dry Gas Water Tanks System 28	Dry Gas Water Tanks System 29	Dry Gas Water Tanks System 30	Dry Gas Water Tanks System 31	Dry Gas Water Tanks System 32	Dry Gas Water Tanks System 33	Dry Gas Water Tanks System 34	Dry Gas Water Tanks System 35	Dry Gas Water Tanks System 36	Dry Gas Water Tanks System 37	Dry Gas Water Tanks System 38	Dry Gas Water Tanks System 39
Water Sample Association	Natural Gas																
Date Sampled	8/9/2010	8/9/2010	8/9/2010	8/9/2010	8/9/2010	8/9/2010	11/11/20 10	11/11/20 10	11/11/20 10	11/11/20 10	11/11/20 10	11/11/20 10	8/10/201 0	8/10/201 0	8/10/201 0	3/30/201 1	3/30/201 1
Date Analyzed	8/24/201 0	8/24/201 0	8/24/201 0	8/25/201 0	8/25/201 0	8/25/201 0	11/22/20 10	11/22/20 10	11/22/20 10	11/22/20 10	11/22/20 10	11/22/20 10	8/24/201 0	8/24/201 0	8/24/201 0	4/8/2011	4/8/2011
Job Number	J04537.5 01	J04537.4 01	J04537.0 01	J04537.2 01	J04537.3 01	J04537.1 01	JO6156	JO6152	JO6154	JO6155	JO6157	J06153	J04538.2 01	J04538.0 01	J04538.5 01	J11871	J11871
Sample Pressure (psig)	29	117	108	120	185	117	820	805	822	810	820	800	39	65	780	1450	1450
Sample Temperatur e (deg F)	82	90	81	84	80	82	62	66	75	70	90	62	79	63	90	93	93
Gas-Water- Ratio (ft^3/bbl)	0.35	1.33	0.87	1.14	1.93	1.41	5.4	6.5	5.2	6.4	6.5	3.6	0.53	1.25	8.46	5.93	8.68
Base Conditions (Flashed to)	14.73 PSI & 60°F	14.65 PSI & 60°F	14.65 PSI & 60°F														
Throughput (bbl/day)	41	5	8	14	20	6	1	4	24	1	27	7	5	90	16	1	1
Chromatog raph Compound s	Wt %																
Nitrogen	0	12.239	0	3.447	0.827	8.282	4.42	1.216	0.606	3.759	0.21	5.399	0.181	4.56	0.672	0.397	0.786
Carbon Dioxide	11.844	5.5	5.863	5.28	3.408	4.519	2.652	1.266	1.815	1.633	0.859	1.712	28.4	11.9	4.493	26.42	30.182
Methane	80.768	69.614	84.658	84.721	92.617	84.846	92.309	97.064	97.065	94.048	98.489	91.965	46.024	61.623	54.194	65.628	64.48
Ethane	1.08	1.734	0.906	1.035	0.578	0.325	0.348	0.265	0.212	0.365	0.169	0.472	5.91	4.591	8.805	5.597	2.697
Propane	0.648	0.435	0.237	0.211	0.152	0	0.018	0.013	0.009	0.02	0.003	0.087	3.014	2.168	9.552	1.054	0.263
Isobutane	0.564	0.118	0.129	0.085	0.052	0	0.008	0.004	0.003	0.004	0.001	0.021	0.691	0.556	3.298	0.072	0.031
n-Butane	0.555	0.201	0.196	0.186	0.155	0	0.008	0.003	0.016	0.009	0.008	0.032	1.256	0.918	5.11	0.046	0.059
2,2 Dimethylpro pane	0	0	0.124	0	0.06	0	0.002	0	0.02	0.005	0.005	0	0.08	0.013	0.115	0.007	0.024
Isopentane	0.509	0.264	0.152	0.065	0.09	0	0.005	0.011	0.007	0.007	0.003	0.03	0.62	0.526	2.283	0.014	0.035
n-Pentane	0.665	0.165	0.02	0	0.107	0	0.007	0.003	0.009	0.009	0.001	0.019	0.388	0.496	1.827	0.014	0.045

Dry Gas Produced Water	Dry Gas Water Tanks System 23	Dry Gas Water Tanks System 24	Dry Gas Water Tanks System 25	Dry Gas Water Tanks System 26	Dry Gas Water Tanks System 27	Dry Gas Water Tanks System 28	Dry Gas Water Tanks System 29	Dry Gas Water Tanks System 30	Dry Gas Water Tanks System 31	Dry Gas Water Tanks System 32	Dry Gas Water Tanks System 33	Dry Gas Water Tanks System 34	Dry Gas Water Tanks System 35	Dry Gas Water Tanks System 36	Dry Gas Water Tanks System 37	Dry Gas Water Tanks System 38	Dry Gas Water Tanks System 39
2,2 Dimethylbut ane	0	0.004	0.024	0.01	0.005	0	0.001	0	0.001	0.004	0	0.001	0.024	0.032	0.086	0	0.004
Cyclopentan e	0.011	0.043	0.039	0.035	0.021	0.004	0.004	0.002	0.001	0.001	0	0.009	0.17	0.156	0	0.014	0.003
2,3 Dimethylbut ane	0.023	0.105	0.043	0.029	0.01	0.025	0.001	0.001	0.001	0.001	0.001	0.002	0.034	0.052	0.413	0.004	0.008
2 Methylpenta ne	0.178	0.838	0.272	0.223	0.066	0.177	0.006	0.004	0.008	0.006	0.006	0.011	0.295	0.332	0.555	0.051	0.092
3 Methylpenta ne	0.271	1.176	0.363	0.296	0.066	0.237	0.004	0.004	0.009	0.005	0.008	0.005	0.267	0.296	0.343	0.085	0.138
n-Hexane	0.771	3.329	1.245	0.998	0.174	0.582	0.011	0.009	0.028	0.02	0.026	0.011	0.727	0.705	0.67	0.293	0.451
Methylcyclo pentane	0.26	0.994	0.471	0.383	0.115	0.154	0.015	0.012	0.015	0.007	0.006	0.033	0.566	0.77	1.109	0.07	0.106
Benzene	0.106	0.696	0.835	0.237	0.116	0.045	0.011	0.012	0.004	0.002	0.003	0.022	2.278	0.849	0.743	0.012	0.011
Cyclohexan e	0	0.715	0.433	0.393	0.11	0.01	0.003	0.001	0.01	0.006	0.001	0.007	0.753	0.856	1.076	0.091	0.122
2- Methylhexan e	0.016	0.036	0.05	0.045	0.018	0.006	0.002	0.001	0.002	0.002	0	0.002	0.108	0.144	0.147	0.005	0.01
3- Methylhexan e	0.016	0.031	0.05	0.051	0.018	0.006	0.003	0.001	0.002	0.001	0	0.003	0.112	0.158	0.147	0.005	0.01
2,2,4 Trimethylpe ntane	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Other C7's	0.339	0.283	0.242	0.223	0.106	0.176	0.023	0.019	0.017	0.008	0.008	0.04	0.347	0.737	0.72	0.068	0.337
n-Heptane	0.038	0.061	0.111	0.096	0.048	0.017	0.007	0.004	0.007	0.004	0.001	0.007	0.231	0.358	0.299	0.005	0.01
Methylcyclo hexane	0.085	0.185	0.321	0.282	0.175	0.062	0.02	0.012	0.003	0.004	0.002	0.021	0.82	1.546	1.252	0.01	0.014
Toluene	0.27	0.324	0.811	0.389	0.24	0.1	0.022	0.01	0.008	0.004	0.005	0.008	3.516	1.52	0.773	0.014	0.013
Other C8's	0.096	0.252	0.421	0.322	0.183	0.076	0.028	0.026	0.038	0.019	0.003	0.041	0.632	1.408	0.681	0.016	0.032
n-Octane	0.043	0.058	0.095	0.071	0.034	0.013	0.004	0.002	0.005	0.002	0.002	0.003	0.123	0.276	0.099	0	0.006
Ethylbenzen e	0.029	0.032	0.094	0.042	0.025	0.012	0.003	0.003	0.003	0.002	0.001	0.003	0.177	0.113	0.028	0	0
M & P Xylenes	0.196	0.13	0.459	0.203	0.101	0.067	0.01	0.004	0.005	0.002	0.005	0.003	1.039	0.523	0.138	0.005	0.005
O-Xylene	0.052	0.032	0.106	0.054	0.025	0.018	0.003	0.001	0.002	0.001	0.002	0.001	0.237	0.109	0.028	0	0
Other C9's	0.068	0.206	0.336	0.284	0.12	0.043	0.014	0.016	0.023	0.02	0.007	0.021	0.311	0.886	0.229	0	0.006
n-Nonane	0.056	0.046	0.121	0.058	0.023	0.015	0.002	0.001	0.004	0.001	0.006	0.001	0.077	0.149	0.022	0	0
Other C10's	0.268	0.101	0.438	0.151	0.092	0.081	0.009	0.008	0.014	0.013	0.035	0.007	0.365	0.519	0.067	0	0

Dry Gas Produced Water	Dry Gas Water Tanks System 23	Dry Gas Water Tanks System 24	Dry Gas Water Tanks System 25	Dry Gas Water Tanks System 26	Dry Gas Water Tanks System 27	Dry Gas Water Tanks System 28	Dry Gas Water Tanks System 29	Dry Gas Water Tanks System 30	Dry Gas Water Tanks System 31	Dry Gas Water Tanks System 32	Dry Gas Water Tanks System 33	Dry Gas Water Tanks System 34	Dry Gas Water Tanks System 35	Dry Gas Water Tanks System 36	Dry Gas Water Tanks System 37	Dry Gas Water Tanks System 38	Dry Gas Water Tanks System 39
n-Decane	0.039	0.022	0.055	0.032	0.008	0.008	0.001	0.001	0.002	0.001	0.034	0	0.028	0.04	0.006	0	0
Undecanes (11)	0.136	0.031	0.28	0.063	0.055	0.094	0.016	0.001	0.026	0.005	0.09	0.001	0.199	0.113	0.02	0	0
Total	100	100	100	100	100	100	100	100	100	100	100	100	100	99.998	100	99.997	99.98
Specific Gravity	0.638	0.68	0.625	0.616	0.583	0.605	0.608	0.579	0.585	0.593	0.575	0.606	0.872	0.746	0.802	0.703	0.714
Molecular Weight (g/g- mole)	18.43	19.64	18.06	17.79	16.86	17.48	17.58	16.73	16.9	17.15	16.62	17.52	25.13	21.52	23.14	20.3	20.63
Gas Volume Measured																	
Throughput (bbl/day)	41	5	8	14	20	6	1	4	24	1	27	7	5	90	16	1	1
Gas-Water- Ratio (ft^3/bbl)	0.35	1.33	0.87	1.14	1.93	1.41	5.4	6.5	5.2	6.4	6.5	3.6	0.53	1.25	8.46	5.93	8.68
Cubic Feet per Year	5,238	2,427	2,540	5,825	14,089	3,088	1,971	9,490	45,552	2,336	64,058	9,198	967	41,063	49,406	2,164	3,168
Vapor Recovery	0,200	2,121	2,010	0,020	11,000	0,000	1,011	0,100	10,002	2,000	01,000	0,100	001	11,000	10,100	2,101	0,100
System	No																
Convert Volume to Tons																	
MW Sample Gas (g/g-																	
mole) Cubic Feet	18.43	19.64	18.06	17.79	16.86	17.48	17.58	16.73	16.90	17.15	16.62	17.52	25.13	21.52	23.14	20.30	20.63
Year Cm^3 per	5,238	2,427	2,540	5,825	14,089	3,088	1,971	9,490	45,552	2,336	64,058	9,198	967	41,063	49,406	2,164	3,168
Ft^3 Base	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317	28317
Condition Constant (g-	4.22119 E-05																
mole/cm^3) Convert grams to	0.00220	0.00220	0.00220	0.00220	0.00220	0.00220	0.00220	0.00220	0.00220	0.00220	0.00220	0.00220	0.00220	0.00220	0.00220	0.00220	0.00220
pounds Convert pounds to tons	2643 0.00050	2643 0.00050	2643 0.00050	2643 0.00050	2643 0.00050	<u>2643</u> 0.00050	2643 0.00050	<u>2643</u> 0.00050	2643 0.00050								
Tons/Year (total sample)	0.12707 6847	0.06275	0.06039	0.13642 6278	0.31270 4457	0.07105 6038	0.04561 4385	0.20900	1.01342 2369	0.05273	1.40151 3664	0.21214	0.03199 8348	1.16327 9261	1.50502 2166	0.05784	0.08604
MT/Year (total	0.11528 2177	0.05693 0902	0.05479 1339	0.12376 3838	0.28368 0711	0.06446 0953	0.04138 0674	0.18960 6936	0.91936 1308	0.04784 4171	1.27143 1809	0.19245 0735	0.02902 8413	1.05530 9194	1.36533 3143	0.05247 2972	0.07805 5567

D-26

Dry Gas Produced Water	Dry Gas Water Tanks System 23	Dry Gas Water Tanks System 24	Dry Gas Water Tanks System 25	Dry Gas Water Tanks System 26	Dry Gas Water Tanks System 27	Dry Gas Water Tanks System 28	Dry Gas Water Tanks System 29	Dry Gas Water Tanks System 30	Dry Gas Water Tanks System 31	Dry Gas Water Tanks System 32	Dry Gas Water Tanks System 33	Dry Gas Water Tanks System 34	Dry Gas Water Tanks System 35	Dry Gas Water Tanks System 36	Dry Gas Water Tanks System 37	Dry Gas Water Tanks System 38	Dry Gas Water Tanks System 39
sample)																	
Emissions Calculation s																	
Sample Pressure	29	117	108	120	185	117	820	805	822	810	820	800	39	65	780	1450	1450
(psi) Gas Water Ratio	0.35	1.33	0.87	1.14	1.93	1.41	5.4	6.5	5.2	6.4	6.5	3.6	0.53	1.25	8.46	5.93	8.68
Methane																	
WT% CH4	80.768	69.614	84.658	84.721	92.617	84.846	92.309	97.064	97.065	94.048	98.489	91.965	46.024	61.623	54.194	65.628	64.48
WT Fraction CH4	0.80768	0.69614	0.84658	0.84721	0.92617	0.84846	0.92309	0.97064	0.97065	0.94048	0.98489	0.91965	0.46024	0.61623	0.54194	0.65628	0.6448
MT/Year CO2e																	
(uncontrolle d)	1.955	0.832	0.974	2.202	5.517	1.149	0.802	3.865	18.740	0.945	26.297	3.717	0.281	13.657	15.539	0.723	1.057
MT/Barrel (uncontrolle				-													
d)	0.00013	0.00046	0.00033	0.00043	0.00076	0.00052	0.00220	0.00265	0.00214	0.00259	0.00267	0.00145	0.00015	0.00042	0.00266	0.00198	0.00290
MT/Year CO2e (controlled 95%)	0.098	0.042	0.049	0.110	0.276	0.057	0.040	0 102	0.027	0.047	1 215	0.196	0.014	0.692	0 777	0.036	0.052
MT/Barrel	0.098	0.042	0.049	0.110	0.276	0.057	0.040	0.193	0.937	0.047	1.315	0.186	0.014	0.683	0.777	0.036	0.053
(controlled 95%)	0.00001	0.00002	0.00002	0.00002	0.00004	0.00003	0.00011	0.00013	0.00011	0.00013	0.00013	0.00007	0.00001	0.00002	0.00013	0.00010	0.00014
Carbon																	
Dioxide																	
WT% CO2 WT Fraction	11.844	5.5	5.863	5.28	3.408	4.519	2.652	1.266	1.815	1.633	0.859	1.712	28.4	11.9	4.493	26.42	30.182
CO2 MT/Year	0.11844	0.055	0.05863	0.0528	0.03408	0.04519	0.02652	0.01266	0.01815	0.01633	0.00859	0.01712	0.284	0.119	0.04493	0.2642	0.30182
CO2																	
(uncontrolle d)	0.014	0.003	0.003	0.007	0.010	0.003	0.001	0.002	0.017	0.001	0.011	0.003	0.008	0.126	0.061	0.014	0.024
MT/Barrel (uncontrolle d)	0.00000 091	0.00000 172	0.00000 110	0.00000 128	0.00000 132	0.00000 133	0.00000 301	0.00000 164	0.00000 190	0.00000 214	0.00000 111	0.00000 129	0.00000 452	0.00000 382	0.00001 050	0.00003 798	0.00006 454
MT/Year CO2e (controlled			_			_			_	_							
95%) MT/Barrel	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.006	0.003	0.001	0.001
(controlled 95%)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Dry Gas Produced Water	Dry Gas Water Tanks System 23	Dry Gas Water Tanks System 24	Dry Gas Water Tanks System 25	Dry Gas Water Tanks System 26	Dry Gas Water Tanks System 27	Dry Gas Water Tanks System 28	Dry Gas Water Tanks System 29	Dry Gas Water Tanks System 30	Dry Gas Water Tanks System 31	Dry Gas Water Tanks System 32	Dry Gas Water Tanks System 33	Dry Gas Water Tanks System 34	Dry Gas Water Tanks System 35	Dry Gas Water Tanks System 36	Dry Gas Water Tanks System 37	Dry Gas Water Tanks System 38	Dry Gas Water Tanks System 39
MTCO2e/Ba rrel Uncontrolle d	0.00013	0.00046	0.00033	0.00043	0.00076	0.00053	0.00220	0.00265	0.00214	0.00259	0.00267	0.00146	0.00016	0.00042	0.00267	0.00202	0.00296
MTCO2e/Ba rrel Controlled 95%	0.00001	0.00002	0.00002	0.00002	0.00004	0.00003	0.00011	0.00013	0.00011	0.00013	0.00013	0.00007	0.00001	0.00002	0.00013	0.00010	0.00015
VOCs Measured																	
WT% C3-C9	5.809	10.713	7.679	5.213	2.392	1.83	0.243	0.178	0.256	0.175	0.108	0.443	18.816	16.503	31.721	1.955	1.835
WT Fraction C3-C9	0.05809	0.10713	0.07679	0.05213	0.02392	0.0183	0.00243	0.00178	0.00256	0.00175	0.00108	0.00443	0.18816	0.16503	0.31721	0.01955	0.01835
Tons/Year (uncontrolle d)	0.007	0.007	0.005	0.007	0.007	0.001	0.000	0.000	0.003	0.000	0.002	0.001	0.006	0.192	0.477	0.001	0.002
Tons VOC/Barrel Uncontrolle d	0.00000 04933	0.00000 36838	0.00000 15883	0.00000 13918	0.00000 10246	0.00000 05938	0.00000 03037	0.00000 02548	0.00000 02962	0.00000 02529	0.00000 01536	0.00000 03678	0.00000 32991	0.00000 58440	0.00008	0.00000 30981	0.00000 43256
Tons/Year (controlled)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.024	0.000	0.000
Tons VOC/Barrel Controlled	0.00000 00247	0.00000 01842	0.00000 00794	0.00000 00696	0.00000 00512	0.00000 00297	0.00000 00152	0.00000 00127	0.00000 00148	0.00000 00126	0.00000 00077	0.00000 00184	0.00000 01650	0.00000 02922	0.00000 40874	0.00000 01549	0.0000 02163

Table D-14: WSPA Dataset #1 Crude Oil Flash Samples

				Crude	Oil Flash Samp	le				
Tank Farm	2014 Crude Throughput (bbl)	Reid Vapor Pressure (psia)	Crude Oil API Gravity	Flash Gas MW (g/g-mole)	GOR (scf/bbl)	Methane (Wt%)	CO2 (Wt%)	VOC [C3-C10] (Wt%)	VOC [C10+] (Wt%)	BTEX (Wt%)
Tank Farm 1	2,260,581	2.1	17	33.08	2.715	24.92	15.08	59.99	0.01	0
Tank Farm 2	1,249,560	0.6	17	31.43	1.123	27.71	30.55	41.7	0	0.04
Tank Farm 3	9,414,322	1.7	18	23.55	7.069	51.57	12.51	35.92	0	0
Tank Farm 4	230,900	5.1	31.2	34.17	14.471	19.21	0.25	80.53	0	0.01
Tank Farm 5	69,133	1.8	21.2	27.22	4.442	40.62	5.15	54.23	0	0
Tank Farm 6	197,040	4.2	33.2	43.55	6.398	7.86	7.87	84.27	0	0
Tank Farm 7	100,103	1	32.8	28.17	10.768	21.54	0.69	77.76	0	0.01
Tank Farm 8	48,779	1.6	29.6	25.44	6.37	32.4	9.51	58.09	0	0
Tank Farm 9	6,198	0.6	21.8	22.71	2.28	44.13	2.78	53.09	0	0
Tank Farm 10	2,429,842	0.1	11.8	25.03	1.931	42.88	53.92	3.2	0	0
Tank Farm 11	8,747	1.8	20.8	43.78	0.853	11.56	26.1	62.34	0	0
Tank Farm 12	292,695	0.7	13.1	28.53	2.231	31.27	63.26	5.47	0	0
Tank Farm 13	7,835	2.4	24.8	31.92	10.891	18.03	25.32	56.65	0	0
Tank Farm 14	73,541	8.6	34.6	44.75	16.059	5.4	0.29	94.31	0	0
Tank Farm 15	14,743	2.9	33.2	35.69	10.801	17.77	0.25	81.97	0	0.01
Tank Farm 16	924,983	6.5	25.8	38.65	8.516	14.66	0.3	85.04	0	0
Tank Farm 17	176,209	2.7	28.2	34.39	11.131	18.8	6.52	74.68	0	0
Tank Farm 18	45,395	3.7	20.6	43.22	3.196	5.56	0.48	93.94	0	0.02
Tank Farm 19	54,139	2.6	26.1	26.28	16.448	39.24	16.46	44.3	0	0
Tank Farm 20	33,174	2.6	26.5	32.46	8.885	26.69	7.38	65.91	0	0.02
Tank Farm 21	57,643	0.4	16.4	33.15	1.948	20.54	58.92	20.54	0	0
Tank Farm 22	2,517	2.3	24.6	26.26	12.098	35.6	36.05	28.35	0	0

Table D-15: WSPA Dataset #1 Produced Water Flash Sample

			Pro	duced Water Flash Sar	nple			
Tank Farm	2014 Water Throughput (bbl)	Flash Gas MW (g/g-mole)	GWR (scf/bbl)	Methane (Wt%)	CO2 (Wt%)	VOC [C3-C10] (Wt%)	VOC [C10+] (Wt%)	BTEX (Wt%)
Tank Farm 1	109,398,086	34.26	0.908	16.34	83.66	0	0	0
Tank Farm 2	37,974,800	35.5	0.558	13.74	86.25	0.01	0	0
Tank Farm 3	71,407,306	25.12	0.864	43.15	56.83	0.02	0	0
Tank Farm 4	738,682	19.89	0.378	70.81	24.75	4.44	0	0
Tank Farm 5	187,980	31.06	0.918	23.99	75.81	0.2	0	0
Tank Farm 6	1,302,932	42.75	1.075	1.94	95.28	2.78	0	0
Tank Farm 7	453,483	20.5	0.333	65.94	33.45	0.61	0	0
Tank Farm 8	32,724	19.69	1.159	72.04	21.28	6.67	0.01	0
Tank Farm 9	5,279	22.45	2.085	56.29	38.35	5.36	0	0
Tank Farm 10	31,928,149	38.26	1.103	8.42	90.07	1.51	0	0
Tank Farm 11	71,289	41.95	0.492	3.02	96.27	0.71	0	0
Tank Farm 12	3,166,001	40.14	1.197	5.7	93.67	0.63	0	0
Tank Farm 13	90,549	38.25	1.532	8.84	89.14	2.02	0	0
Tank Farm 14	555,341	44.37	0.103	10.72	14.56	74.72	0	0
Tank Farm 15	25,821	21.52	0.898	60.13	39.14	0.73	0	0
Tank Farm 16	1,288,097	21.68	0.144	60.07	30.51	9.42	0	0
Tank Farm 17	6,480,307	37.54	0.991	12.22	79.49	8.29	0	0
Tank Farm 18	461,705	44.01	0.315	0	99.96	0.04	0	0
Tank Farm 19	1,037,544	25.38	1.139	42.01	46.72	11.27	0	0
Tank Farm 20	1,215,654	32.91	1.102	19.48	80.07	0.45	0	0
Tank Farm 21	22,713	32.3	1.061	20.81	79.12	0.07	0	0
Tank Farm 22	78,514	34.99	2.246	14.83	85.04	0.13	0	0

Table D-16: WSPA Crude Dataset #2

				Cru	de Oil Flash	Sample				
Tank Farm	2014 Crude Throughput (bbl)	Reid Vapor Pressure (psia)	Crude Oil API Gravity	Flash Gas MW (g/g- mole)	GOR (scf/bbl)	Methane (Wt%)	CO2 (Wt%)	VOC [C3- C10] (Wt%)	VOC [C10+] (Wt%)	BTEX (Wt%)
Tank Farm 1	1,225,438	3.7	26.3	31.42	11.824	24.45	34.71	30.86	0	0.01
Tank Farm 10	788,450	0.2	10.8	18.67	3.063	77.05	19.7	0.12	0	0
Tank Farm 101	1,030,740	0.9	16.8	18.9746	1.852581	76.81431	15.82913	6.377339	0	0
Tank Farm 103	3,246	0.4	15.2	20.375	1.963078	51.49176	2.418754	0.012539	0	0
Tank Farm 105	5,946	0.3	13.2	16.92876	331.2604	88.01012	0.501345	0	0	0
Tank Farm 106	5,991	0.3	15	16.69867	1.248221	94.22659	4.32881	1.444604	0	0
Tank Farm 107	10,159	1.1	16.5	20.83107	2.017638	59.2504	6.865083	14.57106	0	0
Tank Farm 108	37,985	5.3	35.3	31.87611	15.63251	22.89939	0	60.00559	0.000694	0.023967
Tank Farm 109	272	1.5	20.2	21.65979	15.82216	56.13387	10.81279	16.24968	0	0
Tank Farm 11	334,663	0.6	10.7	20.67	0.857	61.1	20.81	3.61	0	0
Tank Farm 110	45,395	3.7	20.6	43.21828	3.195757	5.559086	0.475081	82.67105	0	0.018662
Tank Farm 111	392,686	0.65	15.4	18.42371	3.498334	76.45615	9.91468	2.639746	0	0
Tank Farm 112	18,726	1	20.7	22.50258	9.316953	53.72506	22.46505	13.57988	0.001242	0
Tank Farm 113	4,879	8	37.5	33.71681	42.09923	16.13935	0.153939	60.33903	0.000878	0.015472
Tank Farm 114	73,541	8.6	34.6	44.75252	16.05923	5.402023	0.294284	84.41408	0.001111	0.003407
Tank Farm 115	31,864	2.7	32.5	47.00499	7.423727	4.882739	16.74217	73.6173	0	0
Tank Farm 116	98,376	6	29.1	40.77252	29.53785	7.571031	6.333711	69.99259	0	0
Tank Farm 117	98,376	5.4	30.9	43.15119	63.38001	3.836978	9.468192	71.11549	0	0
Tank Farm 118	197,040	4.2	33.2	43.5546	6.397833	7.864757	7.865012	74.75683	0	0
Tank Farm 119	14,976	5.4	36.2	48.17265	19.06956	3.061039	0.68618	84.86298	0	0
Tank Farm 120	43,215	4.8	28.6	44.81802	9.286603	6.589311	0.341968	84.28561	0	0
Tank Farm 121	13,098	3.7	22	47.53639	2.786334	5.54786	0	88.19923	0	0.010518
Tank Farm 125	197,040	3.4	30	37.54187	28.70456	11.84967	9.403102	62.70886	0	0
Tank Farm 126	446,056	5.3	21	34.61139	4.196467	20.20899	0.872949	68.72063	0	0
Tank Farm 127	69,133	1.8	21.2	27.22455	4.44204	40.61628	5.151408	47.18989	0.001434	0
Tank Farm 13	159,873	0.2	10.8	20.94	0.939	55.16	15.82	2	0	0
Tank Farm 130	76,499	3	17.8	25.24961	8.584963	42.85463	0.745305	41.95402	0.001641	0

				Cru	de Oil Flash	Sample				
Tank Farm	2014 Crude Throughput (bbl)	Reid Vapor Pressure (psia)	Crude Oil API Gravity	Flash Gas MW (g/g- mole)	GOR (scf/bbl)	Methane (Wt%)	CO2 (Wt%)	VOC [C3- C10] (Wt%)	VOC [C10+] (Wt%)	BTEX (Wt%)
Tank Farm 131	12,314	3.2	23.6	35.32927	6.81985	19.70136	0.194455	70.33054	0.002078	0.010824
Tank Farm 132	24,861	0.5	12.6	31.47617	0.804743	28.43912	0.786779	63.41138	0	0
Tank Farm 134	52,798	2	24.2	27.07014	3.267658	41.32338	6.551257	47.83917	0	0.042214
Tank Farm 135	57,772	3.4	18.6	39.88153	3.934664	10.75618	0	78.5917	0	0
Tank Farm 136	1,882	2.8	28.9	36.72705	3.66299	17.19755	0.406666	70.10884	0.001153	0.013748
Tank Farm 137	16,607	2.1	22.7	25.51451	16.78665	42.82269	0.109983	45.30262	0.001728	0
Tank Farm 138	9,348	1.7	17.9	54.89345	10.17449	3.330442	0.947596	90.07534	0	0
Tank Farm 139	4,589	2.9	15.7	42.49846	2.098869	13.20214	0.655421	80.53433	0.002609	0.016291
Tank Farm 14	159,873	0.5	11	25.73	0.444	17.29	7.74	1.74	0	0
Tank Farm 140	475	3.1	15.5	33.85558	5.781136	23.8388	0	67.12369	0.003277	0.015173
Tank Farm 141	11,905	1.3	15	24.69047	10.78745	44.77728	0.647883	39.60552	0.002199	0
Tank Farm 142	8,470	3.4	30.3	50.56633	2.235243	4.313184	0	94.34553	0.002117	0.017767
Tank Farm 143	230,900	5.1	31.2	34.17152	14.47074	19.20723	0.246908	65.23372	0	0.00746
Tank Farm 144	3,860	4.8	23.6	28.9988	8.452952	31.28668	0	54.25642	0	0
Tank Farm 145	6,263	6.3	30.7	53.92558	7.213503	1.087803	0	95.9566	0	0.013018
Tank Farm 146	9,949	2.2	15.2	34.27251	4.731513	23.17662	0.736501	67.60692	0	0.009688
Tank Farm 147	23,190	3.3	21	34.3989	6.587397	20.81514	0.178336	67.29355	0.003185	0.007273
Tank Farm 148	100,103	1	32.8	28.16765	10.76782	21.54303	0.694377	30.10744	0.0018	0.005534
Tank Farm 149	451,954	1.8	17.4	40.87175	3.521652	9.946971	0.13783	79.06972	0.002869	0
Tank Farm 150	182,231	2.5	18	34.57243	7.278493	8.617933	0.118263	53.49722	0.001522	0
Tank Farm 151	54,529	6.9	31.6	36.84871	28.45833	11.84825	0.65292	68.2489	0.000235	0.003256
Tank Farm 152	8,961	2	18.7	32.54065	17.51002	19.90595	0.377781	58.15504	0.001468	0.007657
Tank Farm 153	982,205	5.2	24.7	36.37839	7.445378	20.01664	2.206124	72.32742	0.00182	0
Tank Farm 154	14,714	6	30.5	47.82508	6.887994	2.097897	0.568047	85.8691	0.001655	0.008108
Tank Farm 155	982,205	5.1	27.8	47.67457	9.736298	5.861646	1.864361	88.12752	0.001196	0.00487
Tank Farm 156	23,067	6.5	28.7	37.79354	21.26961	10.68362	0.352376	68.91121	0.000936	0.009062
Tank Farm 157	1,428	4.9	30.6	45.51571	5.910931	3.062297	0.234706	79.70632	0.000683	0.011953
Tank Farm 158	95,039	5	25.1	40.42334	6.725365	12.73658	0	77.93926	0.003481	0.011585
Tank Farm 159	759	2.4	25.4	28.89214	5.431524	32.60933	0.634649	50.76462	0.00073	0.022027

				Cru	de Oil Flash S	Sample				
Tank Farm	2014 Crude Throughput (bbl)	Reid Vapor Pressure (psia)	Crude Oil API Gravity	Flash Gas MW (g/g- mole)	GOR (scf/bbl)	Methane (Wt%)	CO2 (Wt%)	VOC [C3- C10] (Wt%)	VOC [C10+] (Wt%)	BTEX (Wt%)
Tank Farm 16	913	0.4	0	58.5	5.336	35.08	61.46	3.08	0	0
Tank Farm 160	10,320	6.1	28.7	34.01147	33.33109	17.24264	0.515361	63.07859	0.001161	0.005085
Tank Farm 162	27,901	1.4	8.5	38.41514	17.35586	14.61501	1.139264	72.59916	0.002874	0.008168
Tank Farm 163	2,671	4.6	31.7	51.73715	2.661966	2.369865	2.063434	88.23341	0.004175	0.01113
Tank Farm 165	29,112	4.6	31.9	38.08682	14.62469	14.47845	1.944299	73.59896	0.001034	0.006334
Tank Farm 17	68,547	0.8	10.3	33.7	0.363	18.91	76.22	4.87	0	0
Tank Farm 19	292,532	0.6	10.8	18.83	3.156	75.48	19.04	0.36	0	0
Tank Farm 2	1,673,425	0.9	12.3	27.62	2.473	34	63.98	1.4	0	0
Tank Farm 20	93,379	2.2	23.3	31.87	3.346	25.01	33.42	35.45	0	0
Tank Farm 21	409,977	0.9	12.7	24.64	1.333	45.43	51.26	2.33	0	0
Tank Farm 22	2,618,564	0.4	13.2	29.13	0.901	29.3	68.51	1.02	0	0
Tank Farm 23	423,266	0.5	13.4	29.84	4.343	27.2	72.49	0.02	0	0
Tank Farm 24	1,072,965	0.5	11	32.21	0.680	20.83	77.01	0.37	0	0
Tank Farm 25	255,542	0.3	12.9	30.25	0.793	24.36	64.7	2.86	0	0
Tank Farm 26	1,113,128	0.6	11	33.17	0.932	18.43	79.55	0.07	0	0
Tank Farm 27	1,113,128	0.4	12.8	24.19	2.127	46.37	49.2	0.75	0	0
Tank Farm 28	179,848	1.8	22	32.17	10.815	18.18	51.92	13.91	0	0
Tank Farm 3	992,565	1	13.8	24.94	8.956	43.68	54.16	1.02	0	0
Tank Farm 30	179,848	0.5	14.2	27.95	7.488	12	16.41	2.13	0	0
Tank Farm 32	834,956	0.5	0	59.8	3.882	57.51	34.71	0.32	0	0
Tank Farm 33	459,922	0.4	18.3	25.6	2.362	40.46	56.44	0.05	0	0
Tank Farm 34	179,848	6.9	31.4	34.69	45.095	16.43	16.51	52.66	0	0
Tank Farm 35	1,113,128	1	18.7	29.75	2.438	16.04	31.53	8.48	0	0
Tank Farm 36	179,848	1.6	21.9	28.32	8.438	31.83	41.29	18.87	0	0
Tank Farm 37	179,848	2.6	21.8	37.28	6.121	11.6	65.62	18.63	0	0
Tank Farm 39	1,325,555	7.8	30.7	44.06	16.548	5.85	1.12	84.13	0	0
Tank Farm 4	15,271,669	4.8	28.1	40.15	9.153	11.23	23.79	59.5	0	0
Tank Farm 40	294,540	6.2	30.3	42.46	12.372	10.55	3.07	81.77	0	0.01
Tank Farm 41	1,086,818	7.1	29.1	45.86	10.909	6.13	0.8	87	0	0.01

		Crude Oil Flash Sample								
Tank Farm	2014 Crude Throughput (bbl)	Reid Vapor Pressure (psia)	Crude Oil API Gravity	Flash Gas MW (g/g- mole)	GOR (scf/bbl)	Methane (Wt%)	CO2 (Wt%)	VOC [C3- C10] (Wt%)	VOC [C10+] (Wt%)	BTEX (Wt%)
Tank Farm 42	1,958,644	4.9	28.8	49.06	5.080	4.88	2.33	89.55	0	0.02
Tank Farm 43	424,603	8.3	32.5	47.38	10.329	5.59	1.57	88.67	0	0
Tank Farm 44	33,174	2.6	26.5	32.46143	8.884517	26.68646	7.383677	59.91604	0.000505	0.015503
Tank Farm 45	176,209	2.7	28.2	34.38947	11.13063	18.79762	6.521442	62.17677	0	0
Tank Farm 46	51,684	7.5	33.1	43.84607	29.31854	5.271561	2.329941	81.5765	0	0.037017
Tank Farm 47	38,493	5.6	25.7	38.44332	6.950425	14.77541	2.139958	77.11208	0	0
Tank Farm 48	14,743	2.9	33.2	35.68696	10.80139	17.77345	0.25453	68.28692	0.000756	0.015066
Tank Farm 5	8,736,302	0.6	20.2	27.96	1.151	35.4	41.77	21.3	0	0
Tank Farm 50	647,573	3	25.2	25.27817	50.71236	25.18014	2.363251	14.03833	0	0
Tank Farm 51	58,472	3.4	31.2	29.15229	10.73545	31.69697	5.735076	50.23638	0	0.07446
Tank Farm 53	147,004	3	27.5	31.75527	23.91285	26.65227	8.000574	57.08218	0.001041	0.007399
Tank Farm 54	171,474	2.4	27.2	40.42545	5.108398	4.577803	1.30779	62.68888	0.001905	0
Tank Farm 55	91,607	2.3	27.4	39.65949	5.830681	4.501521	13.46039	52.50332	0.001623	0
Tank Farm 56	647,573	2.4	25.5	32.58563	11.70836	25.73761	7.49886	61.1296	0.002978	0.006781
Tank Farm 57	23,425	2.5	29.6	31.1323	6.832823	22.31762	3.78888	48.50452	0.002153	0.011705
Tank Farm 58	28,827	2.7	25.5	47.06796	0.905879	8.815327	0.75708	88.94609	0	0.003189
Tank Farm 6	8,736,302	0.6	12.7	26.88	4.878	36.6	61.97	1.1	0	0
Tank Farm 60	91,607	1.7	24.9	24.70545	21.78475	48.09194	5.544902	39.00801	0.001067	0.004706
Tank Farm 62	6,685	1.3	16.3	38.22025	8.835261	7.799713	87.36699	1.300817	0	0
Tank Farm 63	7,835	2.4	24.8	31.91621	10.89066	18.02924	25.32187	30.29639	0.003446	0
Tank Farm 64	2,429,842	0.05	11.8	25.02802	1.930764	42.87924	53.92315	0.417246	0	0
Tank Farm 65	6,198	0.6	21.8	22.70541	2.280086	44.12612	2.776589	14.72547	0	0
Tank Farm 66	292,695	0.65	13.1	28.53116	2.230643	31.27206	63.25923	4.067557	0	0
Tank Farm 67	54,139	2.6	26.1	26.28301	16.4475	39.23859	16.46356	33.09485	0	0
Tank Farm 68	7,091	1.7	25.6	24.63603	14.39281	47.19412	34.545	16.70307	0.000746	0
Tank Farm 71	8,747	1.8	20.8	43.77519	0.852807	11.55967	26.10169	61.41782	0	0
Tank Farm 72	2,517	2.3	21.9	26.26467	12.09783	35.60027	36.04818	12.73909	0.003762	0
Tank Farm 73	2,285	0.5	10.7	25.06415	5.074412	43.38871	56.22962	0.236134	0	0
Tank Farm 76	659,826	6.1	30.9	40.31714	17.92482	10.99271	2.244656	77.28431	0	0.003924

		Crude Oil Flash Sample								
Tank Farm	2014 Crude Throughput (bbl)	Reid Vapor Pressure (psia)	Crude Oil API Gravity	Flash Gas MW (g/g- mole)	GOR (scf/bbl)	Methane (Wt%)	CO2 (Wt%)	VOC [C3- C10] (Wt%)	VOC [C10+] (Wt%)	BTEX (Wt%)
Tank Farm 79	48,779	1.6	20.4	25.44395	6.37031	32.39621	9.509104	19.10728	0.004657	0
Tank Farm 80	8,393	2.4	20.4	42.03111	3.142197	6.298519	26.40593	52.32153	0.00281	0
Tank Farm 85	4,440,933	0.5	12.5	16.43225	8.980984	95.23163	1.51618	0.013027	0	0
Tank Farm 87	57,995	0.3	14.2	17.89701	14.56877	80.11172	8.352089	0.365906	0	0
Tank Farm 89	4,440,933	0.4	14.6	22.7532	6.417227	45.12859	27.47294	0.963332	0	0
Tank Farm 9	992,565	0.5	12.4	21.89	0.359	57.71	39.53	0.4	0	0
Tank Farm 90	57,995	0.3	13.3	16.90629	9.275279	91.10967	6.267619	0.006696	0	0
Tank Farm 91	924,983	6.5	25.8	38.64536	8.516479	14.66144	0.30188	76.75049	0.001192	0.003904
Tank Farm 92	53,550	2.9	32.4	29.66795	17.43035	27.80564	15.49417	42.10791	0.00145	0.009113
Tank Farm 93	112,836	4.7	28.5	35.12511	21.27871	18.26431	12.34313	60.16095	0.00106	0.004967
Tank Farm 94	862,980	2.6	25.8	26.42987	14.82285	43.00515	1.936053	50.19446	0.000586	0.00338
Tank Farm 95	606,518	1.5	20.5	23.56843	8.910803	53.73177	1.967473	39.34993	0.001636	0
Tank Farm 96	10,531	0.6	20.2	17.30857	2.725726	87.58494	3.827073	3.591284	0	0
Tank Farm 97	57,643	0.4	16.4	33.14946	1.947594	20.54071	58.92049	17.89037	0	0
Tank Farm 98	6,972	0.4	14.8	18.77994	8.051823	66.79634	1.217255	0.352792	0	0

Table D-17: WSPA Water Dataset #2

			Produced V	Vater Flash	Sample			
Tank Farm	2014 Water Throughput (bbl)	Flash Gas MW (g/g-mole)	GWR (scf/bbl)	Methane (Wt%)	CO2 (Wt%)	VOC [C3-C10] (Wt%)	VOC [C10+] (Wt%)	BTEX (Wt%)
Tank Farm 85	69,961,303	16.98157486	0.686204	91.31088	8.659109	0.030008	0	0
Tank Farm 6	152,582,286	39.42	1.767	6.69	93.26	0.06	0	0
Tank Farm 89	69,961,303	32.01473925	1.257251	21.50131	78.46952	0.029173	0	0
Tank Farm 4	157,320,153	40.54	1.463	5.67	90.41	3.92	0	0
Tank Farm 74	31,848,216	25.04936978	1.329654	44.62852	42.84264	10.89398	0	0
Tank Farm 5	152,582,286	38.63	0.835	7.98	91.94	0.01	0	0
Tank Farm 111	20,816,607	20.85572489	0.801158	63.68624	36.31376	0	0	0
Tank Farm 64	31,928,149	38.25516636	1.103001	8.416178	90.06941	0.089023	0	0
Tank Farm 84	11,845,861	19.39184939	0.677077	72.83505	27.1264	0.038552	0	0
Tank Farm 83	11,845,861	23.46767835	0.707565	48.16194	45.50862	0.036044	0	0
Tank Farm 22	34,502,591	40.36	1.257	5.14	94.58	0.01	0	0
Tank Farm 9	19,388,356	35.64	1.180	10.79	73.11	0.03	0	0
Tank Farm 49	31,848,216	41.13003981	1.575893	4.206514	95.11716	0.676327	0	0
Tank Farm 3	19,388,356	38.52	1.364	8.18	91.71	0.06	0	0
Tank Farm 75	31,848,216	24.94959978	0.236006	44.34209	49.20346	5.345632	0	0
Tank Farm 82	11,845,861	18.29448491	0.396476	80.64331	19.32123	0.035457	0	0
Tank Farm 1	12,342,046	38.98	1.667	7.86	88.42	3.09	0	0
Tank Farm 42	17,788,511	36.88	0.584	11.12	88.76	0.12	0	0
Tank Farm 87	2,348,729	18.4444684	1.178439	79.51303	20.4807	0.006037	0	0
Tank Farm 10	6,967,019	34.97	1.289	11.93	70.53	0.08	0	0
Tank Farm 88	10,132,193	30.61144732	0.471378	25.12859	74.79841	0.073009	0	0
Tank Farm 2	19,388,356	41.1	1.102	4.07	95.89	0.04	0	0
Tank Farm 40	6,149,164	33.43	0.875	18.16	81.79	0.04	0	0
Tank Farm 39	7,780,946	29.5	0.483	28.25	71.59	0.16	0	0
Tank Farm 27	14,790,748	39.54	1.516	3.42	78.18	0.02	0	0
Tank Farm 99	2,925,394	21.80299036	0.802083	58.42702	41.57298	0	0	0
Tank Farm 45	6,480,307	37.53807818	0.990809	12.21836	79.48539	8.29538	0	0

	Produced Water Flash Sample							
Tank Farm	2014 Water Throughput (bbl)	Flash Gas MW (g/g-mole)	GWR (scf/bbl)	Methane (Wt%)	CO2 (Wt%)	VOC [C3-C10] (Wt%)	VOC [C10+] (Wt%)	BTEX (Wt%)
Tank Farm 90	2,348,729	22.7567476	1.003005	53.57676	46.41376	0.009474	0	0
Tank Farm 77	6,254,997	36.14396473	0.821809	14.82453	72.43285	12.74262	0	0
Tank Farm 34	2,864,213	33.7	1.476	17.17	80.73	0.62	0	0
Tank Farm 105	1,226,854	17.54395056	0.98	86.53692	13.46308	0	0	0
Tank Farm 11	2,404,306	33.34	1.377	16.51	72.36	0.02	0	0
Tank Farm 94	2,860,805	24.55832735	0.534508	45.73167	53.21412	1.054212	0	0
Tank Farm 35	14,790,748	37.97	0.557	5.47	72.3	0.12	0	0
Tank Farm 19	2,897,597	31.1	0.877	20.65	60.41	0.02	0	0
Tank Farm 78	2,493,018	27.3543444	0.577617	38.02141	36.10269	22.43199	0.012047	0
Tank Farm 41	3,072,889	31.35	0.666	21.65	72.49	0.06	0	0
Tank Farm 58	1,739,541	24.59952693	0.607521	52.47416	9.633247	37.8926	0	0
Tank Farm 67	1,037,544	25.38232449	1.139159	42.00506	46.72132	7.657799	0.001028	0
Tank Farm 101	1,349,022	21.66679956	0.709101	60.57593	33.07231	6.351753	0	0
Tank Farm 32	6,264,112	35.97	0.451	9.8	72.59	0.06	0	0
Tank Farm 12	4,468,777	38.95	0.948	5.3	81.82	0.01	0	0
Tank Farm 24	4,875,954	41.46	1.227	3.51	96.4	0	0	0
Tank Farm 66	3,166,001	40.14426221	1.197072	5.6964	93.66531	0.623342	0	0
Tank Farm 44	1,215,654	32.90847632	1.101967	19.4782	80.07037	0.451424	0	0
Tank Farm 50	985,630	28.41391197	0.947147	32.33292	64.65152	3.015556	0	0
Tank Farm 92	2,865,262	38.23787887	0.844347	8.659271	91.34073	0	0	0
Tank Farm 28	2,864,213	40.99	1.934	3.47	91.96	0.01	0	0
Tank Farm 43	4,914,999	30.64	0.181	28.86	48.74	22.4	0	0
Tank Farm 95	1,299,398	32.83559835	0.939167	19.52176	80.47824	0	0	0
Tank Farm 30	2,864,213	37.89	1.256	4.96	69.19	0.06	0	0
Tank Farm 23	2,482,846	41.38	1.694	3.64	96.36	0	0	0
Tank Farm 26	14,790,748	42.41	0.595	1.61	95.09	0.01	0	0
Tank Farm 36	2,864,213	40.38	1.055	4.8	93.71	0.2	0	0
Tank Farm 33	4,070,860	40.31	0.648	4.5	90.87	0.03	0	0
Tank Farm 102	2,192,751	29.67582237	0.264687	27.6879	72.19009	0	0	0

	Produced Water Flash Sample							
Tank Farm	2014 Water Throughput (bbl)	Flash Gas MW (g/g-mole)	GWR (scf/bbl)	Methane (Wt%)	CO2 (Wt%)	VOC [C3-C10] (Wt%)	VOC [C10+] (Wt%)	BTEX (Wt%)
Tank Farm 21	2,177,225	39.04	0.775	7.2	92.14	0.01	0	0
Tank Farm 56	985,630	30.84225055	0.524832	26.2085	66.46658	7.322867	0	0
Tank Farm 20	2,177,225	41.42	1.394	3.21	95.61	0.01	0	0
Tank Farm 143	738,682	19.89057249	0.378419	70.80717	24.74945	4.443373	0	0
Tank Farm 93	731,049	35.59965714	1.006542	13.23172	85.55293	0.005105	0	0
Tank Farm 37	2,864,213	42.81	1.623	1.62	98.34	0.05	0	0
Tank Farm 13	738,060	34.81	0.861	11.92	68.68	0.01	0	0
Tank Farm 91	1,288,097	21.68489871	0.144493	60.0738	30.51059	9.415611	0	0
Tank Farm 148	453,483	20.50330939	0.332865	65.93777	33.45341	0.608822	0	0
Tank Farm 127	187,980	31.05642746	0.918385	23.98527	75.80509	0.209641	0	0
Tank Farm 118	1,302,932	42.74989214	1.075133	1.936619	95.27612	2.787264	0	0
Tank Farm 108	476,869	16.043	0.145414	100	0	0	0	0
Tank Farm 25	1,514,226	40.98	0.400	4.1	94.53	0.19	0	0
Tank Farm 72	78,514	34.98694974	2.245833	14.8283	85.04026	0.125545	0	0
Tank Farm 7	312,763	36.64	0.758	8.5	73.34	0	0	0
Tank Farm 46	112,125	30.78881663	0.721875	24.80844	74.56647	0.625092	0	0
Tank Farm 96	73,059	25.08634462	0.772005	43.27204	56.72796	0	0	0
Tank Farm 79	32,724	19.69365075	1.15901	72.04285	21.27834	6.213724	0.010202	0
Tank Farm 126	1,545,601	26.47860516	0.032083	38.01458	61.85011	0.126521	0	0
Tank Farm 63	90,549	38.24817329	1.532428	8.836821	89.13807	1.399906	0.000569	0
Tank Farm 48	25,821	21.52429507	0.898333	60.13132	39.13817	0.730511	0	0
Tank Farm 114	555,341	44.37179686	0.102831	10.72089	14.55749	71.99699	0	0
Tank Farm 73	32,724	30.89766611	1.01644	24.37197	75.52878	0.099245	0	0
Tank Farm 80	131,537	41.8160412	1.511997	2.928877	96.34488	0.205432	0	0
Tank Farm 8	312,763	39.33	0.713	2.16	69.89	0	0	0
Tank Farm 97	22,713	32.30093481	1.061266	20.81255	79.12286	0.06459	0	0
Tank Farm 57	23,147	27.40747556	0.551862	41.6622	8.760026	46.7443	0	0
Tank Farm 65	5,279	22.44764599	2.084542	56.28968	38.34714	5.36251	0	0
Tank Farm 112	271,479	42.01404642	0.371553	2.793593	96.96268	0.243727	0	0

	Produced Water Flash Sample							
Tank Farm	2014 Water Throughput (bbl)	Flash Gas MW (g/g-mole)	GWR (scf/bbl)	Methane (Wt%)	CO2 (Wt%)	VOC [C3-C10] (Wt%)	VOC [C10+] (Wt%)	BTEX (Wt%)
Tank Farm 113	9,529	28.80673627	1.010625	30.05172	4.700344	42.36684	0	0.210823
Tank Farm 71	71,288	41.94761306	0.492387	3.019242	96.27216	0.7086	0	0
Tank Farm 69	600	21.3	4.933518	44.96896	21.29782	18.11352	0.001878	0
Tank Farm 70	2,098	35.2232386	0.224999	16.50731	75.67057	7.822126	0	0
Tank Farm 16	435	39.43	1.382	6.68	93.26	0.06	0	0
Tank Farm 146	75	32.22672557	0.537795	24.22539	64.1923	11.58231	0	0
Tank Farm 136	68	33.40430755	0.28386	21.85926	41.16462	25.90804	0	0

This page intentionally left blank.

Exhibit 3

ATTACHMENT C

CONDENSATE TANK OIL AND GAS ACTIVITIES

CONDENSATE TANK OIL AND GAS ACTIVITIES

This attachment provides the detailed documentation of the methods used to develop refined emission factors for volatile organic compounds emissions from condensate storage tanks.

CONDENSATE TANK OIL AND GAS ACTIVITIES

FINAL REPORT

Prepared for:

Texas Commission on Environmental Quality Air Quality Division

Prepared by:

Eastern Research Group, Inc.

October 10, 2012

ERG NO. 0292.01.011.001

Condensate Tank Oil and Gas Activities

FINAL REPORT

Prepared for:

Miles Whitten Texas Commission on Environmental Quality P. O. Box 13087 Austin, TX 78711-3087

Prepared by:

Mike Pring Eastern Research Group, Inc. 1600 Perimeter Park Dr., Suite 200 Morrisville, NC 27560

October 10, 2012

3508 Far West Blvd., Suite 210, Austin, TX 78731 – Phone: 512-407-1820 – Fax: 512-419-0089 Arlington, VA – Atlanta, GA – Austin, TX – Boston, MA – Chantilly, VA – Chicago, IL – Cincinnati, OH – Hershey, PA Prairie Village, KS – Lexington, MA – Nashua, NH – Research Triangle Park, NC – Sacramento, CA

Equal Opportunity Employer . Printed on 100% Post-Consumer Recycled Paper

Table of Contents

Execu	tive Su	mmaryv								
1.0	Introd	luction1-1								
2.0	VOC Emissions From Condensate Storage Tanks									
	2.1 Condensate Production									
	2.2	Literature Review								
		2.2.1 Emissions Data Derived from Testing2-3								
		2.2.2 Comparisons of Emissions Data Derived from Testing with Emissions Estimates Derived from Models/Software Programs2-5								
		2.2.3 Emissions Estimates Derived Solely from Models/Software Programs								
		2.2.4 Other Studies								
	2.3	Emission Factor Development Using the Barnett Shale Area Special Inventory, Phase II (2009)								
	2.4	Phone Survey of Area Sources								
		2.4.1 Analysis of Data Collected via Phone Survey								
		2.4.2 Use of Vapor Recovery and Controls to Reduce Emissions2-20								
		2.4.3 Self-Selection Bias								
		2.4.4 Innovative Practices that Lower Area Emissions 2-21								
	2.5	Weighting the Data2-22								
		2.5.1 Weighting Data based on Method2-22								
		2.5.2 Weighting Data based on Production								
	2.6	Regional Emission Factors2-24								
	2.7	Accounting for the Effect of Recovery and Control Devices								
		2.7.1 Barnett Shale								
		2.7.2 HGB, BPA, and Haynesville Shale 2-35								
		2.7.3 Calculation of Control Factor2-36								
		2.7.4 ERG 2012 Survey2-37								
	2.8	Summary of Findings and Recommended Emission Factors2-39								
3.0	Hazar	dous Air Pollutant Emissions from Condensate Storage Tanks								
	3.1	BTEX Emissions Data Derived from Testing 3-1								
	3.2	BTEX Emissions Data Derived from the Barnett Shale Area Special Inventory, Phase II (2009)								

	3.3	BTEX Emissions Data Derived from E&P TANK Reports Submitted in Response to the ERG Survey	
	3.4	Summary of Findings and Recommended Regional BTEX Emission Factors	3-8
4.0	Recon	nmendations for Future Condensate Tank Investigations	4-1
5.0	Natur	al Gas Composition Data Collection and Analysis	.5-1
Attach	nment A	A Survey Letter	
Attach	nment l	B Survey Materials – Word Table and Excel Spreadsheet	
Attach	nment (C Condensate Tank Emissions Data (Condensate_Tank_Data.xlsx)	
		D County-Level Average Natural Gas Composition Profiles sition_Profiles.xlsx)	

List of Tables

Table E-1. County-Level VOC Emission Factorsv
Table E-2. Basin-Level and State-Level Average Natural Gas Stream Composition
Profilesxii
Table 2-1. Condensate Tank Emission Data from the HARC 2006 Study
Table 2-2. Operating Parameters, Production, and Measured Emissions 2-7
Table 2-3. Comparison of Estimated Emissions with Measured Emissions
Table 2-4. Ratio Between Estimated Emissions and Measured Emissions 2-9
Table 2-5. Condensate Tank Emission Factors from the TCEQ 2010 Study 2-11
Table 2-6. Producer-Supplied VOC Emission Estimates for Condensate Tank
Batteries in Haynesville Shale Area2-12
Table 2-7. Condensate Tank VOC Emission Factors by Method – Barnett Shale
Inventory
Table 2-8. Condensate Tank VOC Emission Factors by County – Barnett Shale
Inventory
Table 2-9. Target Survey Counties 2-16
Table 2-10. Survey Results Using all Valid Survey Data Estimated with Preferred
Estimation Methods2-19
Table 2-11. Weighting Factors by Emissions Estimation Method
Table 2-12. Average Regional VOC Emission Factors Derived from Testing Data.2-25
Table 2-13. Average Regional VOC Emission Factors Derived from Estimation
Methods
Table 2-14. Average Regional VOC Emission Factors from ERG Survey Data and
Barnett Shale Inventory Data 2-26
·

List of Tables (Continued)

Table 2-15. Average Regional VOC Emission Factors 2-20	6
Table 2-16. County-Level VOC Emission Factors 2-29	9
Table 2-17. Percentage of Surveyed Production with Tank Emissions Controlled in	
the HGB, BPA, and Haynesville Shale Areas	8
Table 2-18. Surveyed Production, Total Production, Percent of Surveyed Production	l
Controlled, and Control Factor, by Region2-4	1
Table 3-1. VOC and BTEX Content in the Vent Gas 3-	1
Table 3-2. VOC and BTEX Emission Factors	2
Table 3-3. Condensate Tank BTEX Emission Factor Estimates Using Data from the	
Barnett Shale Phase II 2009 Inventory3-4	4
Table 3-4. Condensate Tank BTEX Emission Factor Estimates Using Data from E&F	P
TANK Reports Submitted for ERG Survey3-	5
Table 3-5. Production-Weighted Average Regional BTEX Emission Factors, from	
Testing Data, Barnett Shale Inventory, and Survey Data	8
Table 3-6. Arithmetic Average Regional BTEX Emission Factors, from Testing Data,	,
Barnett Shale Inventory, and Survey Data	8
Table 5-1. Counties Included in the Natural Gas Composition Analysis	2
Table 5-2. List of Counties Located in Marathon Thrust Belt Basin and Palo Duro	
Basin5-3	3
Table 5-3. Basin-Level and State-Level Average Natural Gas Stream Composition	
Profiles	4
Table 5-4. Average Natural Gas Composition Profile Allocation Scheme	6

List of Figures

Figure 2-1. Condensate Producing Regions in Texas	2-1
Figure 2-2. Target Survey Counties	2-17
Figure 2-3. Relationship between Production and Emission Factor	2-24
Figure 2-4. Condensate Tank Emission Data Sources by County	2-27
Figure 2-5. Average Regional Emission Factors, Before Controls	2-28
Figure 5-1. Natural Gas Methane Composition Distribution across Texas Counties	.5-11

List of Acronyms

Acronym	Definition
API	American Petroleum Institute
BBL	Barrel
BPA	Beaumont-Port Arthur
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
CENRAP	Central Regional Air Planning Association
CO ₂	Carbon Dioxide
EPA	U.S. Environmental Protection Agency
ERG	Eastern Research Group
GOR	Gas/Oil Ratio
HAP	Hazardous Air Pollutants
HARC	Houston Advanced Research Center
HGB	Houston-Galveston-Brazoria
IPAMS	Independent Petroleum Association of Mountain States
lbs	Pounds
NSPS	New Source Performance Standard
psig	pounds per square inch gauge
QA	Quality Assurance
RRC	Texas Railroad Commission
TCEQ	Texas Commission on Environmental Quality
TERC	Texas Environmental Research Consortium
VOC	Volatile Organic Compound
VRU	Vapor Recovery Unit
WRAP	Western Regional Air Partnership

Executive Summary

This report is a deliverable for Texas Commission on Environmental Quality (TCEQ) Work Order No. 582-11-99776-FY12-11 to improve area source emission estimates for the oil and gas sector. Improvements will be gained through this effort by the development of refined emission factors for volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions from condensate storage tanks, as well as improved gas speciation profiles for different gas formations on a county-by-county basis.

Under this project, a review of available literature was conducted for data on emissions testing and emissions estimates for condensate tanks in Texas. In addition, data collected in the Barnett Shale Area Special Inventory conducted by TCEQ was evaluated, a phone survey of Texas condensate producers was conducted, and additional data on emissions estimates was obtained from several recent studies evaluating condensate storage tank emissions. ERG evaluated this data for its relevance and quality, and derived region-specific emission factors for eight geographic regions in the state. These emission factors are presented in Table E-1 below.

County	Region	Production Weighted Emission Factor (Ibs/bbl)	Arithmetic Average Emission Factor (lbs/bbl)		
Anderson	East Texas/Haynesville Shale	4.22	5.92		
Andrews	Permian	7.07	5.90		
Angelina	East Texas/Haynesville Shale	4.22	5.92		
Aransas	Western Gulf	11.0	14.8		
Archer	Fort Worth/Barnett Shale	9.76	16.0		
Armstrong	Palo Duro	7.61	9.75		
Atascosa	Eagle Ford Shale	10.5	10.0		
Austin	Western Gulf	11.0	14.8		
Bailey	Palo Duro	7.61	9.75		
Bandera	Fort Worth/Barnett Shale	9.76	16.0		
Bastrop	Western Gulf	11.0	14.8		
Baylor	Fort Worth/Barnett Shale	9.76	16.0		
Bee	Eagle Ford Shale	10.5	10.0		
Bell	Western Gulf	11.0	14.8		
Bexar	Western Gulf	11.0	14.8		
Blanco	Fort Worth/Barnett Shale	9.76	16.0		
Borden	Permian	7.07	5.90		
Bosque	Fort Worth/Barnett Shale	9.76	16.0		
Bowie	East Texas/Haynesville Shale	4.22	5.92		
Brazoria	Western Gulf	11.0	14.8		
Brazos	Eagle Ford Shale	10.5	10.0		
Brewster	Marathon Thrust Belt	7.61	9.75		

Table E-1. County-Level VOC Emission Factors

County	Region	Production Weighted Emission Factor (Ibs/bbl)	Arithmetic Average Emission Factor (lbs/bbl)			
Briscoe	Palo Duro	7.61	9.75			
Brooks	Western Gulf	11.0	14.8			
Brown	Fort Worth/Barnett Shale	9.76	16.0			
Burleson	Eagle Ford Shale	10.5	10.0			
Burnet	Fort Worth/Barnett Shale	9.76	16.0			
Caldwell	Western Gulf	11.0	14.8			
Calhoun	Western Gulf	11.0	14.8			
Callahan	Fort Worth/Barnett Shale	9.76	16.0			
Cameron	Western Gulf	11.0	14.8			
Camp	East Texas/Haynesville Shale	4.22	5.92			
Carson	Anadarko	3.15	5.87			
Cass	East Texas/Haynesville Shale	4.22	5.92			
Castro	Palo Duro	7.61	9.75			
Chambers	Western Gulf	11.0	14.8			
Cherokee	East Texas/Haynesville Shale	4.22	5.92			
Childress	Palo Duro	7.61	9.75			
Clay	Fort Worth/Barnett Shale	9.76	16.0			
Cochran	Permian	7.07	5.90			
Coke	Permian	7.07	5.90			
Coleman	Fort Worth/Barnett Shale	9.76	16.0			
Collin	Fort Worth/Barnett Shale	9.76	16.0			
Collingsworth	Palo Duro	7.61	9.75			
Colorado	Western Gulf	11.0 14.8				
Comal	Western Gulf	11.0 14.8				
Comanche	Fort Worth/Barnett Shale	9.76	16.0			
Concho	Fort Worth/Barnett Shale	9.76	16.0			
Cooke	Fort Worth/Barnett Shale	9.76	16.0			
Coryell	Fort Worth/Barnett Shale	9.76	16.0			
Cottle	Palo Duro	7.61	9.75			
Crane	Permian	7.07	5.90			
Crockett	Permian	7.07	5.90			
Crosby	Permian	7.07	5.90			
Culberson	Permian	7.07	5.90			
Dallam	Palo Duro	7.61	9.75			
Dallas	Fort Worth/Barnett Shale	9.76	16.0			
Dawson	Permian	7.07	5.90			
Deaf Smith	Palo Duro	7.61	9.75			
Delta	East Texas/Haynesville Shale	4.22	5.92			
Denton	Fort Worth/Barnett Shale	9.76	16.0			
DeWitt	Eagle Ford Shale	10.5	10.0			
Dickens	Permian	7.07	5.90			
Dimmit	Eagle Ford Shale	10.5 10.0				
Donley	Palo Duro	7.61	9.75			
Duval	Western Gulf	11.0	14.8			

County	Region	Production Weighted Emission Factor (lbs/bbl)	Arithmetic Average Emission Factor (lbs/bbl)			
Eastland	Fort Worth/Barnett Shale	9.76	16.0			
Ector	Permian	7.07	5.90			
Edwards	Permian	7.07	5.90			
El Paso	Permian	7.07	5.90			
Ellis	Fort Worth/Barnett Shale	9.76	16.0			
Erath	Fort Worth/Barnett Shale	9.76	16.0			
Falls	East Texas/Haynesville Shale	4.22	5.92			
Fannin	East Texas/Haynesville Shale	4.22	5.92			
Fayette	Eagle Ford Shale	10.5	10.0			
Fisher	Permian	7.07	5.90			
Floyd	Palo Duro	7.61	9.75			
Foard	Fort Worth/Barnett Shale	9.76	16.0			
Fort Bend	Western Gulf	11.0	14.8			
Franklin	East Texas/Haynesville Shale	4.22	5.92			
Freestone	East Texas/Haynesville Shale	4.22	5.92			
Frio	Eagle Ford Shale	10.5	10.0			
Gaines	Permian	7.07	5.90			
Galveston	Western Gulf	11.0	14.8			
Garza	Permian	7.07	5.90			
Gillespie	Fort Worth/Barnett Shale	9.76	16.0			
Glasscock	Permian	7.07	5.90			
Goliad	Western Gulf	11.0	14.8			
Gonzales	Eagle Ford Shale	10.5	10.0			
Gray	Anadarko	3.15	5.87			
Grayson	Fort Worth/Barnett Shale	9.76	16.0			
Gregg	East Texas/Haynesville Shale	4.22	5.92			
Grimes	Eagle Ford Shale	10.5	10.0			
Guadalupe	Western Gulf	11.0	14.8			
Hale	Palo Duro	7.61	9.75			
Hall	Palo Duro	7.61	9.75			
Hamilton	Fort Worth/Barnett Shale	9.76	16.0			
Hansford	Anadarko	3.15	5.87			
Hardeman	Fort Worth/Barnett Shale	9.76	16.0			
Hardin	Western Gulf	11.0	14.8			
Harris	Western Gulf	11.0	14.8			
Harrison	East Texas/Haynesville Shale	4.22	5.92			
Hartley	Palo Duro	7.61	9.75			
Haskell	Fort Worth/Barnett Shale	9.76	16.0			
Hays	Western Gulf	11.0	14.8			
Hemphill	Anadarko	3.15	5.87			
Henderson	East Texas/Haynesville Shale	4.22	5.92			
Hidalgo	Western Gulf	11.0	14.8			
Hill	Fort Worth/Barnett Shale	9.76	16.0			
Hockley	Permian	7.07	5.90			

County	Region	Production Weighted Emission Factor (Ibs/bbl)	Arithmetic Average Emission Factor (Ibs/bbl)			
Hood	Fort Worth/Barnett Shale	9.76	16.0			
Hopkins	East Texas/Haynesville Shale	4.22	5.92			
Houston	East Texas/Haynesville Shale	4.22	5.92			
Howard	Permian	7.07	5.90			
Hudspeth	Permian	7.07	5.90			
Hunt	East Texas/Haynesville Shale	4.22	5.92			
Hutchinson	Anadarko	3.15	5.87			
Irion	Permian	7.07	5.90			
Jack	Fort Worth/Barnett Shale	9.76	16.0			
Jackson	Western Gulf	11.0	14.8			
Jasper	Western Gulf	11.0	14.8			
Jeff Davis	Permian	7.07	5.90			
Jefferson	Western Gulf	11.0	14.8			
Jim Hogg	Western Gulf	11.0	14.8			
Jim Wells	Western Gulf	11.0	14.8			
Johnson	Fort Worth/Barnett Shale	9.76	16.0			
Jones	Fort Worth/Barnett Shale	9.76	16.0			
Karnes	Eagle Ford Shale	10.5	10.0			
Kaufman	East Texas/Haynesville Shale	4.22	5.92			
Kendall	Fort Worth/Barnett Shale	9.76	16.0			
Kenedy	Western Gulf	11.0	14.8			
Kent	Permian	7.07	5.90			
Kerr	Fort Worth/Barnett Shale	9.76	16.0			
Kimble	Fort Worth/Barnett Shale	9.76	16.0			
King	Permian	7.07 5.90				
Kinney	Western Gulf	11.0	14.8			
Kleberg	Western Gulf	11.0	14.8			
Knox	Fort Worth/Barnett Shale	9.76	16.0			
La Salle	Eagle Ford Shale	10.5	10.0			
Lamar	East Texas/Haynesville Shale	4.22	5.92			
Lamb	Palo Duro	7.61	9.75			
Lampasas	Fort Worth/Barnett Shale	9.76	16.0			
Lavaca	Eagle Ford Shale	10.5	10.0			
Lee	Eagle Ford Shale	10.5	10.0			
Leon	Eagle Ford Shale	10.5	10.0			
Liberty	Western Gulf	11.0	14.8			
Limestone	East Texas/Haynesville Shale	4.22	5.92			
Lipscomb	Anadarko	3.15	5.87			
Live Oak	Eagle Ford Shale	10.5	10.0			
Llano	Fort Worth/Barnett Shale	9.76	16.0			
Loving	Permian	7.07	5.90			
Lubbock	Permian	7.07 5.90				
Lynn	Permian	7.07	5.90			
Madison	Western Gulf	11.0	14.8			

County	Region	Production Weighted Emission Factor (Ibs/bbl)	Arithmetic Average Emission Factor (Ibs/bbl)			
Marion	East Texas/Haynesville Shale	4.22	5.92			
Martin	Permian	7.07	5.90			
Mason	Fort Worth/Barnett Shale	9.76	16.0			
Matagorda	Western Gulf	11.0	14.8			
Maverick	Eagle Ford Shale	10.5	10.0			
McCulloch	Fort Worth/Barnett Shale	9.76	16.0			
McLennan	Fort Worth/Barnett Shale	9.76	16.0			
McMullen	Eagle Ford Shale	10.5	10.0			
Medina	Western Gulf	11.0	14.8			
Menard	Fort Worth/Barnett Shale	9.76	16.0			
Midland	Permian	7.07	5.90			
Milam	Eagle Ford Shale	10.5	10.0			
Mills	Fort Worth/Barnett Shale	9.76	16.0			
Mitchell	Permian	7.07	5.90			
Montague	Fort Worth/Barnett Shale	9.76	16.0			
Montgomery	Western Gulf	11.0	14.8			
Moore	Anadarko	3.15	5.87			
Morris	East Texas/Haynesville Shale	4.22	5.92			
Motley	Palo Duro	7.61	9.75			
Nacogdoches	East Texas/Haynesville Shale	4.22	5.92			
Navarro	East Texas/Haynesville Shale	4.22	5.92			
Newton	Western Gulf	11.0	14.8			
Nolan	Permian	7.07	5.90			
Nueces	Western Gulf	11.0	14.8			
Ochiltree	Anadarko	3.15	5.87			
Oldham	Palo Duro	7.61	9.75			
Orange	Western Gulf	11.0	14.8			
Palo Pinto	Fort Worth/Barnett Shale	9.76	16.0			
Panola	East Texas/Haynesville Shale	4.22	5.92			
Parker	Fort Worth/Barnett Shale	9.76	16.0			
Parmer	Palo Duro	7.61	9.75			
Pecos	Permian	7.07	5.90			
Polk	Western Gulf	11.0	14.8			
Potter	Palo Duro	7.61	9.75			
Presidio	Permian	7.07	5.90			
Rains	East Texas/Haynesville Shale	4.22	5.92			
Randall	Palo Duro	7.61	9.75			
Reagan	Permian	7.07	5.90			
Real	Fort Worth/Barnett Shale	9.76	16.0			
Red River	East Texas/Haynesville Shale	4.22	5.92			
Reeves	Permian	7.07	5.90			
Refugio	Western Gulf	11.0	14.8			
Roberts	Anadarko	3.15	5.87			
Robertson	Eagle Ford Shale	10.5 10.0				

County	Region	Production Weighted Emission Factor (Ibs/bbl)	Arithmetic Average Emission Factor (Ibs/bbl)			
Rockwall	East Texas/Haynesville Shale	4.22	5.92			
Runnels	Fort Worth/Barnett Shale	9.76	16.0			
Rusk	East Texas/Haynesville Shale	4.22	5.92			
Sabine	East Texas/Haynesville Shale	4.22	5.92			
San Augustine	East Texas/Haynesville Shale	4.22	5.92			
San Jacinto	Western Gulf	11.0	14.8			
San Patricio	Western Gulf	11.0	14.8			
San Saba	Fort Worth/Barnett Shale	9.76	16.0			
Schleicher	Permian	7.07	5.90			
Scurry	Permian	7.07	5.90			
Shackelford	Fort Worth/Barnett Shale	9.76	16.0			
Shelby	East Texas/Haynesville Shale	4.22	5.92			
Sherman	Anadarko	3.15	5.87			
Smith	East Texas/Haynesville Shale	4.22	5.92			
Somervell	Fort Worth/Barnett Shale	9.76	16.0			
Starr	Western Gulf	11.0	14.8			
Stephens	Fort Worth/Barnett Shale	9.76	16.0			
Sterling	Permian	7.07	5.90			
Stonewall	Permian	7.07	5.90			
Sutton	Permian	7.07	5.90			
Swisher	Palo Duro	7.61	9.75			
Tarrant	Fort Worth/Barnett Shale	9.76	16.0			
Taylor	Fort Worth/Barnett Shale	9.76	16.0			
Terrell	Marathon Thrust Belt	7.61	9.75			
Terry	Permian	7.07	5.90			
Throckmorton	Fort Worth/Barnett Shale	9.76	16.0			
Titus	East Texas/Haynesville Shale	4.22	5.92			
Tom Green	Permian	7.07	5.90			
Travis	Western Gulf	11.0	14.8			
Trinity	Western Gulf	11.0	14.8			
Tyler	Western Gulf	11.0	14.8			
Upshur	East Texas/Haynesville Shale	4.22	5.92			
Upton	Permian	7.07	5.90			
Uvalde	Western Gulf	11.0	14.8			
Val Verde	Permian	7.07	5.90			
Van Zandt	East Texas/Haynesville Shale	4.22	5.92			
Victoria	Western Gulf	11.0	14.8			
Walker	Western Gulf	11.0	14.8			
Waller	Western Gulf	11.0	14.8			
Ward	Permian	7.07	5.90			
Washington	Western Gulf	11.0	14.8			
Webb	Eagle Ford Shale	10.5	10.0			
Wharton	Western Gulf	11.0 14.8				
Wheeler	Anadarko	3.15 5.87				

County	Region	Production Weighted Emission Factor (lbs/bbl)	Arithmetic Average Emission Factor (lbs/bbl)		
Wichita	Fort Worth/Barnett Shale	9.76	16.0		
Wilbarger	Fort Worth/Barnett Shale	9.76	16.0		
Willacy	Western Gulf	11.0	14.8		
Williamson	Western Gulf	11.0	14.8		
Wilson	Eagle Ford Shale	10.5	10.0		
Winkler	Permian	7.07	5.90		
Wise	Fort Worth/Barnett Shale	9.76	16.0		
Wood	East Texas/Haynesville Shale	4.22	5.92		
Yoakum	Permian	7.07	5.90		
Young	Fort Worth/Barnett Shale	9.76	16.0		
Zapata	Western Gulf	11.0	14.8		
Zavala	Eagle Ford Shale	10.5	10.0		

Table E-1. County-Level VOC Emission Factors

Updated natural gas speciation profiles were developed through evaluation of GLYCalc emissions inventory reports submitted to TCEQ as part of the annual point source emissions inventory compilation. ERG reviewed TCEQ emissions inventory files and obtained GLYCalc data for 157 sites located in 64 counties across Texas. Using this information, average county natural gas composition profiles were developed. The 64 counties for which data were available were then grouped by basins (Anadarko, Bend Arch-Forth Worth, East Texas, Permian, and Western Gulf Basins), and basin-level average natural gas composition profile and state-level average profiles were then allocated to counties with no data based on which basin the county was located in. For two basins, the Marathon Thrust Belt and Palo Duro, no data was available so a state-level average profile was developed. Table E-2 presents the basin-level and state-level average natural gas stream composition profiles for both wet and dry natural gas streams.

Composition in %	Anadarko Basin		Bend Arch-Fort Worth Basin		East Texas Basin		Permian Basin		Western Gulf		State Profile	
Volume	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
	Stream	Stream	Stream	Stream	Stream	Stream	Stream	Stream	Stream	Stream	Stream	Stream
Water	0.04	0.13	0.01	0.12	0.01	0.12	0.01	0.15	0.01	0.12	0.01	0.12
Carbon Dioxide	0.64	0.65	1.74	1.74	1.72	1.71	0.95	0.90	1.13	1.14	1.43	1.44
Hydrogen Sulfide	0.03	0.03	0.001	0.001	0.0004	0.0004	0.11	0.11	0.0003	0.25	0.03	0.09
Nitrogen	1.35	1.34	1.74	1.73	0.88	0.87	2.14	2.18	0.51	0.49	1.20	1.19
Methane	90.76	90.68	87.91	87.59	91.73	91.49	80.43	78.53	90.07	89.94	88.67	88.36
Ethane	3.99	3.98	5.23	5.21	3.57	3.64	9.02	9.07	4.51	4.51	5.03	5.00
Propane	1.74	1.74	2.14	2.18	1.04	1.06	4.48	5.39	2.04	2.05	2.13	2.21
Isobutane	0.26	0.26	0.31	0.32	0.28	0.29	0.51	0.61	0.48	0.48	0.38	0.40
n-Butane	0.54	0.54	0.62	0.68	0.31	0.32	1.19	1.63	0.51	0.51	0.58	0.64
Isopentane	0.16	0.16	0.20	0.22	0.15	0.17	0.35	0.40	0.24	0.24	0.22	0.23
n-Pentane	0.17	0.17	0.27	0.29	0.11	0.12	0.32	0.44	0.17	0.17	0.20	0.22
Cyclopentane	0.01	0.01	0.03	0.04	0.04	0.04	0.01	0.02	0.03	0.02	0.02	0.03
n-Hexane	0.10	0.06	0.05	0.12	0.05	0.05	0.16	0.18	0.05	0.06	0.06	0.09
Cyclohexane	0.01	0.01	0.04	0.03	0.03	0.03	0.09	0.11	0.05	0.06	0.04	0.05
Other Hexanes	0.14	0.14	0.07	0.06	0.10	0.11	0.24	0.29	0.17	0.15	0.13	0.13
Heptanes	0.06	0.06	0.08	0.08	0.06	0.07	0.14	0.14	0.07	0.09	0.08	0.08
Methylcyclohexane	0.02	0.02	0.02	0.02	0.01	0.02	0.04	0.04	0.04	0.04	0.03	0.04
Benzene	0.01	0.01	0.01	0.01	0.02	0.03	0.07	0.08	0.01	0.02	0.02	0.02
Toluene	0.01	0.01	0.003	0.003	0.01	0.01	0.04	0.04	0.01	0.02	0.01	0.01
Ethylbenzene	0.001	0.001	0.0005	0.001	0.001	0.001	0.01	0.01	0.001	0.002	0.001	0.002
Xylenes	0.003	0.01	0.002	0.003	0.002	0.005	0.01	0.01	0.003	0.01	0.003	0.005
C8+ Heavies	0.04	0.04	0.03	0.03	0.03	0.04	0.07	0.07	0.11	0.11	0.06	0.06

Table E-2. Basin-Level and State-Level Average Natural Gas Stream Composition Profiles
1.0 Introduction

Under contract with the Texas Commission on Environmental Quality (TCEQ), Eastern Research Group, Inc. (ERG) developed refined emission factors for volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions from condensate tanks, as well as improved gas speciation profiles for different gas formations on a county-bycounty basis. This information will be used to improve area source emissions inventory estimates for the oil and gas sector. This report describes ERG's findings relative to an analysis of existing condensate tank emissions data, survey efforts to collect additional condensate tank emissions data, and development of natural gas speciation profiles in Texas.

2.0 VOC Emissions From Condensate Storage Tanks

A review of available literature was conducted for data on emissions testing and emissions estimates for condensate tanks in Texas. In addition, data collected in the Barnett Shale Area Special Inventory was evaluated, a phone survey of Texas condensate producers was conducted, and additional data on emissions estimates was obtained from TCEQ as available. ERG evaluated this data for its relevance and quality, and derived region-specific emission factors for eight geographic regions in the state. These eight regions are shown in Figure 2-1.

2.1 Condensate Production

Condensate, for purposes of this survey, is defined as a hydrocarbon liquid produced at an oil or gas well and having an American Petroleum Institute (API) gravity greater than 40 degrees.¹ The API gravity of crude oil/condensate can vary from 20 to 70 degrees. In practice, most producers do not distinguish between oil and condensate, calling any petroleum liquid "oil". However, the API gravity of produced liquid is important, as a petroleum liquid with a higher API gravity will generally command a premium in the market.² API gravity is also important in determining what calculation method should be used to estimate the VOC emissions associated with the production of a hydrocarbon liquid. The Texas Railroad Commission (RRC) distinguishes between oil and condensate, with 'oil' being the liquid produced at oil wells and 'condensate' being the hydrocarbon liquid produced at gas wells.

TCEQ's area source emissions estimate is based upon county-level oil and condensate production as reported on the RRC website. When creating an area source emissions estimate, it is important to distinguish between the emissions from petroleum liquid storage tanks located at 'oil' wells, and the emissions from petroleum liquid storage tanks located at 'gas' wells because the VOC emission factor for tanks at oil wells (1.6 pounds (lbs) VOC/barrel (bbl)) is significantly lower than the emission factor historically used for tanks at gas wells (33.3 lbs VOC/bbl).³ Given the difference in these estimates, it is important to distinguish between oil and condensate.

The RRC county level production data shows that the majority of petroleum-producing counties produce both 'oil' and 'condensate'. This is usually due to the fact that, within the geographic boundary of many counties, there may be two or more petroleum producing formations stacked atop one another at different depths below ground. One of the formations may produce oil, while the other may produce gas, while perhaps a third formation yields gas from shale. Therefore, the estimates of emissions from any particular county or region could reflect the emissions from wells tapping one, two, or more petroleum-producing formations underground.

2.2 Literature Review

ERG reviewed the current literature for existing studies and other sources that evaluated emissions from oil and condensate tanks in Texas. These studies included emissions measured via testing, emissions estimated through the use of software programs using

¹ The American Petroleum Institute (API) does not define condensate in terms of its API gravity. The State of Colorado defines condensate as a hydrocarbon liquid that has an API gravity greater than or equal to 40° API at 60°F. Colorado Department of Public Health and Environment, PS Memo 05-01, Oil and Gas Atmospheric Condensate Storage Tank Batteries, Regulatory Definitions and Permitting Guidance, October 1, 2009. http://www.cdphe.state.co.us/ap/down/ps05-01.pdf

² Well Servicing Magazine, "Crude Oil Testing", Andy Maslowski, September/October 2009, <u>http://wellservicingmagazine.com/crude-oil-testing</u>

³ These emission factors were used for estimating emissions from upstream area sources in the oil and gas industry in the report "Characterization of Oil and Gas Production Equipment and Develop a Methodology to Estimate Statewide Emissions", TCEQ, 11/24/2010. The emission factors were first developed in the 2006 HARC study "VOC Emissions From Oil and Condensate Storage Tanks".

equations-of-state, and comparisons of measured emissions with estimated emissions. The data in these studies were analyzed for their validity and utility, and a refined emission factor for estimating emissions from condensate storage tanks was developed. A brief description follows of the available literature, the information they contain, and the information from the study used in developing updated emission factors.

2.2.1 Emissions Data Derived from Testing

This section examines studies where emissions data was generated via direct measurement (testing) of emissions from oil and condensate tanks.

"VOC Emissions from Oil and Condensate Storage Tanks" (Houston Advanced Research Center (HARC), 2006, and Texas Environmental Research Consortium (TERC), 2009).⁴

This study is widely referred to as the "HARC" or "HARC H051C" study. In this study, researchers examined 2 oil and 13 gas (condensate) sites in the Fort Worth basin, and 9 oil and 9 gas sites in the Western Gulf basin. This study measured oil and condensate tank emissions from each site and includes information such as API gravity and separator pressure. The HARC 2006 study noted that the emission estimates had a high uncertainty, due in part to the very low condensate production rates at well sites in Parker and Denton counties. The HARC 2006 study also noted that these measurements were taken during a period when recorded daytime high temperatures ranged from 98 to 107 degrees Fahrenheit at the nearby Dallas-Fort Worth Airport. The VOC emission factor of 33.3 lbs VOC/bbl condensate and the HAP emission factors used in TCEQ's 2008 upstream oil and gas area source inventory are derived from this report.

API provided comments⁵ to the U.S. Environmental Protection Agency (EPA) on the derivation of this emission factor in their comments on EPA's proposed changes to the New Source Performance Standard (NSPS) for Oil and Gas Production (Subpart OOOO) on November 30, 2011.⁶ API called into question the validity of two of the data points used in developing the emission factor. API also questioned the use of emissions data from several sites where the measured condensate production was minimal. API noted in their comments that the 24-hour production measurement methodology used in the HARC study (manual gauging of oil level in the tank) may be subject to error, as the onsite measurements for two barrels of production would require accurately

⁴ Houston Advanced Research Center, VOC Emissions from Oil and Condensate Storage Tanks, October 31, 2006. <u>http://files.harc.edu/Projects/AirQuality/Projects/H051C/H051CFinalReport.pdf</u>

⁵ The API comments relative to condensate storage tank emissions were made by Dr. Ed Ireland of the Barnett Shale Energy Education Council.

⁶ American Petroleum Institute, API Comments on the Proposed Rulemaking – Oil and Gas Sector Regulations, November 30, 2011, <u>http://www.api.org/Newsroom/testimony/upload/2011-11-30-API-Oil-and-Gas-Rule-Final-Comments-Text.pdf</u>

determining a difference of 0.71 to 1.2 inches in oil level via manual gauging of these 300 bbl condensate tanks.⁷ However, in the 2009 revisions to the original report, the study authors noted that daily average production rates during the sampling period were obtained from site operating logs, not manual measurement as first erroneously reported.

API also questioned the presumption that emissions are solely a function of throughput and presented evidence that the VOC emissions per barrel of condensate produced are a non-linear function, dependent primarily upon separator pressure, and, to a lesser extent, API gravity. The comments suggest that each well/tank combination has unique emissions, based on: the composition of the liquids and gas produced, the API gravity of the liquid, the types of separator equipment in use, and the operating parameters of the separator. In general, liquids with a higher API gravity tend to have higher flash emissions per barrel than liquids with a lower API gravity. Also, the larger the pressure drop at the last stage of liquid-gas separation prior to moving the liquid to the storage tank, the higher the flash emissions. Therefore, any emission factor that is dependent solely upon production and does not take these other factors into account may not accurately estimate emissions for a specific well/tank combination.

While such a multivariate approach is feasible for estimating point source emissions at any individual location, this approach would be impractical for estimating county-level, area source emissions where site-specific operating data is not readily available. The approach used by this study overcomes these limitations and provides a reasonably accurate means for estimating emissions from the condensate-producing regions of Texas by developing regional emission factors based on testing data and emissions estimates developed using TCEQ's published preferred methodologies.

ERG re-examined the data from all 33 oil and condensate sites examined in the HARC 2006 study. Although 27 sites produce liquids having an API gravity of 40 degrees or greater, only data from the 22 sites designated as producing condensate have been considered in this analysis. In this re-analysis, three additional data points were removed from the data set. Data for tank 17 was removed because the calculated flash emissions (145 pounds VOC per barrel condensate produced (lbs/bbl)) indicated that 55% of the condensate flashed when reduced in pressure from 200 pounds per square inch gauge (psig). Data for tank 25 was removed because the calculated flash emissions (215 lbs/bbl) indicated that 82% of the condensate flashed when reduced in pressure from 200 psig. According to API, neither of these flash emission values is possible at this separator pressure.⁶ Data for tank 26 was also removed from the dataset, as the recorded emissions (1,217.6 lbs/bbl) seem to indicate an equipment failure (such as a

⁷ Information in Appendix A of the study report indicates that, for the sites having production of two or less barrels of condensate per day, condensate was stored in a single 300 BBL capacity tank. 300 BBL oil tanks typically come in 12 foot and 15.5 foot diameters, and have capacities of 1.68 bbl/inch and 2.8 bbl/inch, respectively.

separator dump valve stuck in the open position) or a measurement error as a 42 gallon barrel of condensate weighs approximately 270 pounds. An emission factor for each of the remaining 19 sites was calculated. Table 2-1 shows the emissions measurement data from the HARC 2006 study.

Tank Battery	County	Region	API Gravity	Separator Discharge Pressure (psi)	VOC (lbs/day)	Production (bbl/day)	VOC Emission Factor (lbs/bbl)
2	Montgomery	Western Gulf	42	41	383.2	105	3.65
3	Montgomery	Western Gulf	41	38	688.9	87	7.92
4	Montgomery	Western Gulf	40	34	93.7	120	0.78
5	Montgomery	Western Gulf	43	46	67.4	100	0.67
6	Montgomery	Western Gulf	39	33	384.7	130	2.96
13	Denton	Fort Worth	61	200	78.5	2	39.25
14	Denton	Fort Worth	59	200	118	4	29.50
15	Denton	Fort Worth	61	200	60	5	12.00
16	Denton	Fort Worth	61	200	121.2	2	60.60
18	Denton	Fort Worth	58	200	73.4	10	7.34
19	Denton	Fort Worth	58	200	26.3	2	13.15
20	Denton	Fort Worth	59	200	304.3	10	30.43
23	Parker	Fort Worth	48	39	150.2	27	5.56
24	Parker	Fort Worth	41	36	4.2	1	4.20
27	Denton	Fort Worth	59	200	28.8	2	14.40
28	Brazoria	Western Gulf	46	38	125.2	30	4.17
29	Brazoria	Western Gulf	42	41	2,055	61	33.69
30	Brazoria	Western Gulf	42	36	91.6	15	6.11
32	Galveston	Western Gulf	48	121	9,016	142	63.49

Table 2-1. Condensate Tank Emission Data from the HARC 2006 Study

The production-weighted average emission factor for these 19 condensate tanks is 16.22 lbs/bbl, whereas the arithmetic average is 17.89 lbs/bbl. The production-weighted approach reduces the effect of measurement error (as noted in the API comments) on the emissions estimate, as the error attributable to measurement error from tanks with very low production has minimal 'weight' in the computation of the overall estimate.

2.2.2 Comparisons of Emissions Data Derived from Testing with Emissions Estimates Derived from Models/Software Programs

There is only a small amount of data from testing available at present. Emission estimates derived through use of emissions estimation software utilizing equations-of-state can provide useful information in developing regional emission factors. Therefore,

emissions data estimated with software and models were used to supplement the existing testing data.

This section examines two studies where researchers conducted emissions testing on tanks and then generated emission estimates for those same tanks using models or software programs.

"Upstream Oil and Gas Storage Tank Project Flash Emissions Models Evaluation" (TCEQ, 2009)

This 2009 study conducted by Hy-Bon Engineering for TCEQ compared actual measured emissions from 30 test sites to estimated emissions from those same sites. Emissions estimates were created using onsite data and several different emissions estimating models and software⁸. At each test site, extensive data was taken on tanks and equipment, operating parameters, environmental conditions, and liquids production. Liquid and gas samples were taken for lab analysis and direct measurements were taken of vapors vented. The measured emissions from the 30 test sites were then compared to the estimated emissions from those same sites.

This report concludes that the calculated emissions using the E&P Tank – AP 42 model typically overestimated measured emissions in 85.7% of the cases, while the E&P Tank - RVP model overestimated emissions for 82.1% of the cases. Calculated emissions using HYSYS Process Simulation software overestimated measured emissions in 64.3% of the cases. Therefore, it was assumed that emissions estimated using E&P Tank – AP 42, E&P Tank – RVP, or HYSYS may over-estimate emissions, and are conservative. This same study showed that the Gas/Oil Ratio (GOR) method in combination with Tanks 4.09 underestimated flashing, breathing and working emissions in 76.7% of the cases. Therefore, any information obtained that utilizes the GOR method to estimate emissions will be, on average, an underestimate of the actual emissions. TCEQ has issued guidance⁹ stating that testing, the various process simulation software packages, E&P Tank, and GOR, in combination with site sampling and analysis, are the preferred methods for estimating flash emissions, in order of most preferred to least preferred.

There are eleven sites out of the thirty whose API gravity is less than 40 degrees, the lower bound for condensate in this study. Therefore, data from these eleven sites will

⁸ The emissions estimation methods used in this study include: E&P TANK 2.0, AspenTech HYSYS 2006.5, GRI-HapCalc 3.0, the Environmental Consultant Research (EC/R) Algorithm, Vasquez-Beggs Correlation, Gas-Oil Ratio (GOR), and Valko-McCain Correlation. TANKS 4.09 was used to estimate breathing and working emissions for the GOR, Vasquez-Beggs, and Valko-McCain methods, which only calculate flash emissions.

⁹ "Calculating Volatile Organic Compounds (VOC) Flash Emissions from Crude Oil and Condensate Tanks at Oil and Gas Production Sites", APDG 5942, May 2012,

http://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/guidance_flashemission.pdf

not be considered. Emissions measurement data from the 19 remaining sites in this report are shown in Table 2-2.

The production-weighted average emission factor from testing for all of these sites is 4.59 lbs/bbl of condensate, whereas the arithmetic average is 11.0 lbs/bbl. The emission measurement tests on these tanks were conducted during the months of July, August, and September.

Site ID #	County	Region	API Gravity (deg.)	Separator Pressure (psia)	Liquid Production (bbl/day)	VOC Emissions (ton/yr)	VOC Emission Factor (lbs/bbl)
WTB# 1	Ector	Permian	43.7	83.82	976	1134.9	6.37
WTB# 4	Terrell	Permian	50	88.82	34	12.6	2.03
WTB# 5	Terrell	Permian	48.3	103.82	18	53	16.1
WTB# 11	Crane	Permian	42.8	33.82	250	72	1.58
WTB# 15	Martin	Permian	40.6	30.82	332	98.8	1.63
WTB# 17	Martin	Permian	41.4	35.82	166	13.1	0.43
WTB# 19	Ector	Permian	42.8	73.82	1979	1790	4.96
WTB# 23	Andrews	Permian	43.3	53.82	327	93.5	1.57
NTB# 1	Ochiltree	Anadarko	44.8	62.14	69	36.7	2.91
NTB# 2	Hansford	Anadarko	45.3	48.44	74	8.3	0.62
NTB# 3	Hansford	Anadarko	42.3	40.44	98	6.9	0.386
NTB# 5	Ochiltree	Anadarko	67.5	44.44	50	154.8	17.0
NTB# 6	Denton	Fort Worth	55.7	158.44	13	19.3	8.14
NTB# 7	Wise	Fort Worth	58.6	161.44	34	38.1	6.14
NTB# 8	Wise	Fort Worth	58.9	139.44	16	100.3	34.3
NTB# 9	Wise	Fort Worth	55.2	167.44	12	38.6	17.6
NTB# 11	Wise	Fort Worth	63.7	245.44	5	71.5	78.4
NTB# 12	Wise	Fort Worth	63.7	239.44	14	14.8	5.79
NTB# 13	Wise	Fort Worth	56.2	139.44	62	39.3	3.47

Table 2-2. Operating Parameters, Production, and Measured Emissions

Table 2-3 shows the estimated emission factors for the 19 test sites using the methods preferred by TCEQ. The emissions factor based on measured emissions is also included for comparison purposes.

		Liquid	VOC Emis	VOC Emission Factors (lbs/bbl)						
Site ID #	County	Production (bbl/day)	Testing	E&P TANK - AP 42 LPO	E&P TANK - RVP LPO	HYSYS	GOR + TANKS 4.09			
WTB# 1	Ector	976	6.37	24.67	37.41	13.42	1.99			
WTB# 4	Terrell	34	2.03	14.83	17.89	8.70	9.15			
WTB# 5	Terrell	18	16.13	12.48	14.61	8.16	6.03			
WTB# 11	Crane	250	1.58	8.90	19.66	8.97	0.48			
WTB# 15	Martin	332	1.63	13.04	18.07	6.88	0.61			
WTB# 17	Martin	166	0.43	20.76	35.35	15.72	0.86			
WTB# 19	Ector	1979	4.96	30.52	55.26	22.69	4.51			
WTB# 23	Andrews	327	1.57	46.60	55.48	42.44	1.79			
NTB# 1	Ochiltree	69	2.91	9.69	26.13	11.91	1.23			
NTB# 2	Hansford	74	0.62	9.70	17.92	7.26	0.32			
NTB# 3	Hansford	98	0.39	12.52	26.50	4.98	1.59			
NTB# 5	Ochiltree	50	16.96	53.81	59.84	4.71	13.63			
NTB# 6	Denton	13	8.14	13.49	24.03	12.64	2.74			
NTB# 7	Wise	34	6.14	8.22	17.57	1.77	1.43			
NTB# 8	Wise	16	34.35	15.07	26.37	3.77	4.28			
NTB# 9	Wise	12	17.63	37.44	72.60	4.57	27.03			
NTB# 11	Wise	5	78.36	12.60	17.53	8.77	4.60			
NTB# 12	Wise	14	5.79	18.79	24.27	2.74	9.00			
NTB# 13	Wise	62	3.47	25.98	30.58	0.53	8.15			

 Table 2-3. Comparison of Estimated Emissions with Measured Emissions

It is instructive to see how much the various emissions estimation methods overestimate or under-estimate emissions when compared to measured emissions values. This can help place the estimates generated via emissions estimation methods in context with the measured emissions, and give a sense of their value in estimating actual emissions from condensate tanks. Table 2-4 shows the ratio that the various estimation models over- or under- estimated emissions. The ratio is presented as (estimated emission/measured emission). A ratio of 1 indicates the estimate is in perfect agreement with the measurement, whereas a ratio of 10 indicates the estimated emission rate is ten times higher than the measured emission rate. A ratio of 0.5 indicates the estimated emissions are half of the measured emissions, while a ratio of 0.1 indicates the estimated emissions are 1/10th of the measured emissions. For simplicity, some values have been rounded.

	Emission Factor	Ratio of Over E	stimate or Under	Estimate	
Site ID #	From Measurement (lbs/bbl)	E&P TANK - AP 42 LPO	E&P TANK - RVP LPO	HYSYS	GOR + Tank 4.09
WTB# 1	6.37	4.0	6.0	2.0	0.3
WTB# 4	2.03	7.0	9.0	4.3	4.5
WTB# 5	16.13	0.8	0.9	0.5	0.4
WTB# 11	1.58	5.6	12.5	5.7	0.3
WTB# 15	1.63	8.0	11	4.0	0.4
WTB# 17	0.43	48	82	36	2.0
WTB# 19	4.96	6.0	11	4.6	0.9
WTB# 23	1.57	30	35	27	1.1
NTB# 1	2.91	3.3	9.0	4.0	0.4
NTB# 2	0.62	16	29	12	0.5
NTB# 3	0.39	32	69	13	4.0
NTB# 5	16.96	3.0	3.5	0.3	0.8
NTB# 6	8.14	1.7	3.0	1.6	0.3
NTB# 7	6.14	1.3	3.0	0.3	0.2
NTB# 8	34.35	0.4	0.8	0.1	0.1
NTB# 9	17.63	2.0	4.0	0.3	1.5
NTB# 11	78.36	0.2	0.2	0.1	0.1
NTB# 12	5.79	3.0	4.0	0.5	1.6
NTB# 13	3.47	7.5	9.0	0.2	2.3
	Average	9.5	15.9	6.1	1.1

Table 2-4. Ratio Between Estimated Emissions and MeasuredEmissions

As can be seen in the table, the discrepancy between the estimated emissions and measured emissions is quite high. Only 18% of these estimates are within the range of half to twice (0.5 to 2) of the actual measured value. In this comparison, the emissions estimation models are shown to be inconsistent.

"Upstream Oil and Gas Tank Emission Measurements" (TCEQ, 2010)

This 2010 study conducted by TCEQ examined 7 gas wells/condensate tank sites in the Barnett Shale. This study compared actual measured emissions to estimated emissions using an emissions estimations model (E&P TANK). The research team collected extensive information on the equipment, operating parameters, production, and vented emissions. Vented emissions were measured with both a thermal mass flow meter and an ultrasonic flow meter. Samples of vent gas were collected and analyzed at two different labs. Production of water and condensate were measured. VOC emission rates and emission factors were calculated using this data. Liquid samples were collected

from the pressurized separators and analyzed in a lab. The lab data on the pre-flash liquid composition and equipment operating parameter data were used as inputs to E&P TANK software, and emissions were estimated.

This study is notable for its duplication of all critical measurements and analyses. However, only three of the wells produced condensate during the study period. One of those wells produced only one barrel of condensate, and this production was measured with manual gauging of two tanks of unknown size operating in parallel. The accuracy of this measurement could be subject to the same questions about measurement precision noted by API in their comments on the 2006 HARC study.¹⁰ The other four wells produced no condensate, but VOC emissions were measured from the associated produced water tanks at two of these sites. The study was conducted in July 2010, and the average ambient temperatures recorded on the sites ranged from 74.8 to 86.3 degrees Fahrenheit.

In Table 2-5, the VOC emissions are calculated for the three tanks having condensate production. This table shows the emissions measured using the production data from the thermal mass flow meter and the ultrasonic flow meter. The emissions estimated using E&P TANK are also shown.

If the emissions data from the three sites that produced condensate are averaged using a production-weighted average of the data from the two measurement methods, the average emission factor from both the measurement methods is 12.11 lbs VOC/bbl condensate, whereas the arithmetic average for these three sites from both the measurement methods is 17.52 lbs VOC/bbl condensate. In this study, the estimates of emissions produced with the E&P TANK model varied significantly from the values for actual measured emissions.

2.2.3 Emissions Estimates Derived Solely from Models/Software Programs

This section examines a study which provided a set of emission estimates that were generated using only models or software programs.

"Control of VOC Flash Emissions from Oil and Condensate Storage Tanks in East Texas" (TCEQ, 2010)

This 2010 study conducted by TCEQ assessed the impact of Title 30 Texas Administrative Code 115.112(d)(5) on the implementation of VOC control devices on oil and condensate tanks in the Houston-Galveston-Brazoria (HGB) ozone nonattainment area. In this study, producers in the target areas were surveyed to assess the number of

¹⁰ American Petroleum Institute, API Comments on the Proposed Rulemaking – Oil and Gas Sector Regulations, November 30, 2011, <u>http://www.api.org/Newsroom/testimony/upload/2011-11-30-API-Oil-and-Gas-Rule-Final-Comments-Text.pdf</u>

Tank			API	Soucestar	Production (bbl/day)	Measured with Thermal Mass Flow Meter		Measured with Ultrasonic Mass Flow Meter		Estimated with E&P TANK
Battery	County	Region	Gravity	Separator Pressure (psi)		VOC Emissions (Ibs/day)	VOC Emission Factor (lbs/bbl)	VOC Emissions (lbs/day)	VOC Emission Factor (lbs/bbl)	VOC Emission Factor (lbs/bbl)
Gage Pitts	Wise	Fort Worth	61.2	171	58.5	717.9	12.3	639.9	10.9	11.5
Waggoner Crystelle	Wise	Fort Worth	61.2	119	3.34	12.7	3.8	105.3	31.5	7.6
First Baptist Church Slidell No.1	Wise	Fort Worth	51	NR	1	11.3	11.3	35.3	35.3	0.7

Table 2-5. Condensate Tank Emission Factors from the TCEQ 2010 Study

tanks that were controlled and the type of controls installed. Although this report does not include any new emissions measurements, it is valuable as it contains E&P TANK and HYSYS reports for 21 condensate batteries in the Haynesville Shale area. One company provided a summary of VOC emissions calculated using E&P TANK run with site-specific sampling inputs for 13 condensate tank batteries in the Haynesville Shale area.

Another company provided emissions estimated using the HYSYS Version 2006.5 process simulator for eight natural gas condensate tank batteries in the Haynesville Shale. These estimates are shown in Table 2-6. As no production figures were given, a production-weighted average cannot be calculated. The arithmetic average is 5.80 lbs VOC/ bbl condensate.

Site Number	Region	Separator Pressure (psig)	Separator Temperature (°F)	API Gravity @ 60°F	Estimation Model	VOC Emissions (Ibs/bbl)
1		45	80	50.6	E&P TANK	2.67
2		40	80	49.6	E&P TANK	8.45
3		25	86	54.2	E&P TANK	5.38
4		95	89	55.4	E&P TANK	1.67
5		16	97	59.5	E&P TANK	1.09
6		30	70	55.3	E&P TANK	1.45
7		60	78	64.6	E&P TANK	8.91
8		120	89	55.0	E&P TANK	10.24
9		95	80	55.0	E&P TANK	11.97
10		60	75	52.4	E&P TANK	4.62
11	– Haynesville – Shale	80	72	57.0	E&P TANK	3.98
12	Shale	120	85	55.0	E&P TANK	11.97
13		60	77	53.8	E&P TANK	3.49
14		40	85	N/A	HYSYS	1.16
15		108	98	N/A	HYSYS	0.31
16		752	82	N/A	HYSYS	15.84
17		76	90	N/A	HYSYS	0.32
18		110	80	N/A	HYSYS	0.85
19		690	70	N/A	HYSYS	14.79
20		560	98	N/A	HYSYS	0.73
21		230	90	N/A	HYSYS	11.83
				Average		5.80

Table 2-6. Producer-Supplied VOC Emission Estimates for Condensate TankBatteries in Haynesville Shale Area

2.2.4 Other Studies

The following study was evaluated for its utility in contributing estimates for the regional emission factors being developed in this study.

"Recommendations for Improvements to the CENRAP State's Oils and Gas Emissions Inventories" (Central Regional Air Planning Association (CENRAP), 2008)

This report contains emission factors for flashing, working, and breathing emissions for condensate tanks in the Anadarko basin. The CENRAP 2008 report states that this emission factor (13.86 lbs VOC/bbl) was obtained from the Independent Petroleum Association of Mountain States (IPAMS)/Western Regional Air Partnership (WRAP) Phase III work (Bar-Ilan, et al, 2008). The IPAMS/WRAP Phase III report states that the emission factors were derived from producer surveys conducted in 2008, but this information and the emission factor could not be verified. The CENRAP 2008 report also contains an emission factor for flashing, working, and breathing emissions from condensate tanks in the East Texas, Western Gulf, Fort Worth, and Permian basins. However, as this emission factor (33.3 lbs VOC/bbl) was taken from the HARC H051C study, it will not be used. Therefore, the emission factors from the CENRAP 2008 report will not be used.

2.3 Emission Factor Development Using the Barnett Shale Area Special Inventory, Phase II (2009)

TCEQ provided ERG with data from the "Barnett Shale Area Special Inventory, Phase II 2009" (Barnett Shale Inventory) information in spreadsheet format. The Barnett Shale Inventory data contains 2,268 records with reported condensate production rates and calculated VOC emissions. The VOC emissions were estimated using a variety of methods, including direct measurement of tank emissions, test data, and flash emission and working and breathing emissions models. ERG analyzed this data and developed emission factors for condensate tanks in the Bend-Arch-Fort Worth and Barnett Shale counties.

The original data from 4 separate spreadsheet pages was uploaded into an Access database so that data for individual facilities could be joined into one record. The data was then downloaded back into Excel for analysis. Records were sorted to remove: all records using non-preferred emission estimations methods (Vasquez-Beggs equation, derived emission factors, and HARC H051C emission factor), all records where condensate tank emissions were equal to zero, and all records where annual throughput of condensate was equal to zero. Individual records were examined for internal consistency, and were rejected if the recorded site values for annual throughput were not equal to condensate production. Emission factors were calculated using the values for emissions and throughput. All records with emission factors above 140 lbs/bbl were rejected, as it was deemed that emissions above 50% of the weight of produced condensate were indicative of equipment malfunction or an error in the data, estimating method, or record. The records were then sorted by estimation method. Records in which the estimation method was not noted were not analyzed, as these records lacked

critical information for determining their usefulness and accuracy. Both a productionweighted average and an arithmetic average emission factor, before controls, were calculated for each of the emission estimation methods. The percent of total production that is reported in the special inventory as controlled was also calculated. The results are presented in Table 2-7.

The production-weighted average of the emission factors developed using the estimation methods preferred by TCEQ is 6.77 lbs/bbl, before the effect of controls. The arithmetic average of the emission factors developed using the estimation methods preferred by TCEQ is 12.95 lbs/bbl, before the effect of controls. As discussed in the report "*Upstream Oil and Gas Storage Tank Project Flash Emissions Models Evaluation*", the E&P TANK and the Process Simulator models tended to produce higher emission estimates, while the GOR method produced lower estimates. This is reflected in the Barnett Shale Inventory data; the emission estimates generated with E&P TANK (6.58, 6.71, and 10.13 lbs/bbl) and process simulator models (7.51 lbs/bbl) are generally, but not always, higher than the emission estimates generated using the GOR method (3.96 and 8.12 lbs/bbl).

Flash Emission Calculation Method	Working and Breathing Emission Calculation Method	Total Production (bbl)	Number of Sources (Count)	Production- Weighted Emission Factor (lbs/bbl)	Arithmetic Average Emission Factor (lbs/bbl)	% of Production Controlled
Process Simulator Models	EPA TANKS Program	62,112	32	7.51	10.8	0%
E&P TANK	Other:	112,651	142	6.58	23.3	7.7%
E&P TANK	EPA TANKS Program	94,544	29	6.71	13.5	15.2%
E&P TANK	E&P TANK	947,655	918	10.13	12.9	0.26%
GOR Method	EPA TANKS Program	74,652	36	8.12	9.60	6.71%
GOR Method	E&P TANK	1,175,194	407	3.96	9.87	25.8%
Direct Measurement of Emissions	Other:	12,601	11	7.82	13.3	0%
Preferred Methods	Totals	2,479,409	1,575	6.77	12.95	13.5%

 Table 2-7. Condensate Tank VOC Emission Factors by Method – Barnett Shale

 Inventory

One survey respondent indicated that they used direct measurement to estimate emissions, but, since no other details were given, these data points were treated as being calculated by a preferred method.

The Barnett Shale Inventory data was also sorted by county, and emission factors for condensate tanks were developed at the county level. The data analysis was similar to that done for the entire Barnett Shale region. Emission factors were created using the values for emissions and throughput. The records were then sorted by estimation method, and only records using the preferred estimation methods for flashing emissions (direct measurement, process simulator, E&P Tank, GOR) were analyzed. Records in which the estimation method was unknown were not analyzed. Records were then sorted by county. A production-weighted average emission factor, and an arithmetic average of the emission factors, before controls, was calculated for each of the counties. The results are presented in Table 2-8.

Emission Calculation Methods	County	Total Production (bbl)	Number of Sources (Count)	Production- Weighted Emission Factor (Ibs/bbl)	Arithmetic Average Emission Factor (Ibs/bbl)	% of Production Controlled
Flash Emissions:	Clay	6,404	3	3.83	7.10	0.0%
Process	Cooke	155,352	41	4.15	4.53	35.7%
Simulator	Denton	180,295	226	9.51	13.98	2.6%
Models, E&P	Erath	35,520	72	16.88	18.75	0.0%
Tank, Direct	Hood	199,738	183	7.70	12.10	1.9%
Measurement,	Jack	62,590	40	4.86	8.57	0.0%
GOR	Johnson	62,207	71	9.77	16.74	3.5%
	Montague	588,385	135	3.55	5.39	42.1%
Working and	Palo Pinto	333,620	53	2.25	5.14	0.2%
Breathing	Parker	164,973	231	10.70	13.58	5.6%
Emissions: E&P	Somervell	6,753	23	10.24	16.50	0.0%
Tank, EPA	Stephens	4,156	4	3.96	3.96	0.0%
TANKS Program,	Tarrant	42,517	81	11.09	12.39	6.0%
Other	Wise	636,347	411	9.75	15.58	0%

Table 2-8. Condensate Tank VOC Emission Factors by County – Barnett ShaleInventory

For certain counties, sufficient data may be available to develop a county-specific emission factor based only on the data available for that particular county. However, a careful examination of these county-specific emission factors (see Attachment C) shows that they vary widely within any one region. This may be indicative of the variation in properties of the condensate produced, or it may be due to an inadequate sample size. Due to the variation observed in the county-specific factors and the uncertainties associated with these factors, the regional emission factors presented in Table 2-15 (see discussion below) are recommended for developing the state-wide area source inventory.

2.4 Phone Survey of Area Sources

ERG attempted to contact 54 producers operating in the six regions of interest and request condensate tank emissions data. The companies selected were identified by a search of the RRC website¹¹ as major producers of condensate in the six regions of interest for the survey. The six regions of interest were the Anadarko, East Texas, Permian, and Western Gulf basins and the Haynesville and Eagle Ford shales. Table 2-9 and Figure 2-2 show the counties within each of the regions that were targeted. These counties were chosen due to their high condensate production relative to all of the counties in that region.¹²

Anadarko	Permian	East Texas	Western Gulf	Eagle Ford Shale	Haynesville Shale
Hemphill,	Crane, Crockett,	Anderson, Cass,	Brazoria, Brooks,	DeWitt,	Gregg, Harrison,
Lipscomb,	Loving,	Cherokee,	Galveston, Hardin,	Dimmit,	Marion,
Ochiltree,	Midland, Pecos,	Franklin,	Harris, Hidalgo,	Fayette,	Nacogdoches,
Roberts, and	Upton, and	Freestone,	Jasper, Jefferson,	Karnes,	Panola, Rusk,
Wheeler	Ward	Henderson,	Liberty, Matagorda,	LaSalle,	San Augustine,
		Houston,	Newton, Nueces,	Lavaca, Leon,	and Shelby
		Limestone,	Orange, Polk, San	Live Oak,	
		Navarro, Smith,	Jacinto, San Patricio,	McMullen,	
		and Upshur	Starr, Tyler, and	and Webb	
			Wharton		

Table	2-9.	Target	Survev	Counties
1 4 5 10		. a. got	041109	00011100

¹¹ Railroad Commission of Texas, Statewide Production data Query System, <u>http://www.rrc.state.tx.us/data/online/index.php</u>

¹² Condensate production data at the county level was mapped in ARC GIS, and the top-producing counties in each region were identified. The RRC database was then queried for operators of gas wells in these top-producing counties in each region. Operator production data was compiled for each region and the top producers were identified. These companies were contacted.

Figure 2-2. Target Survey Counties

The Bend Arch-Fort Worth basin and Barnett Shale were not surveyed, as adequate data on condensate tank emissions had already been gathered during the Barnett Shale Area Special Inventory.¹³ As the survey progressed, it became apparent that much of the condensate produced in the counties designated as Haynesville Shale was actually being produced from another petroleum formation (Cotton Valley Group) located in the same counties as the Haynesville Shale. Therefore, for purposes of calculating emissions, the East Texas and Haynesville Shale regions were merged into one region.

Letters were sent to a total of 61 regional offices at 54 separate companies. Letters were sent to 116 contacts at these companies explaining the survey and requesting cooperation in gathering data. The letter requested data on county, separator pressure, API gravity, 2011 condensate production, 2011 VOC emissions, emissions estimation method, control technology, and control efficiency. This letter is shown in

¹³ Texas Commission on Environmental Quality (TCEQ), Barnett Shale Area Special Inventory, Phase Two, <u>http://www.tceq.texas.gov/airquality/point-source-ei/psei.html#barnett2</u>

Attachment A. The initial contact list was obtained from RigData[©] as it provided the names of people involved in the production (drilling) operation for the respective companies. In most cases, each contact was called 3 or 4 times in order to get a referral to someone in the environmental department of the company. Once phone contact was made with a person in a position to provide the requested information, ERG explained the purpose of the survey and requested participation. ERG obtained email addresses and sent survey materials via email directly to the contact person. The survey materials explained the background and purpose of the survey in greater detail, asked for the voluntary participation of the company, and stated that information would be held confidential. Since many of the companies surveyed only had production in one or two regions, the survey materials were tailored for each company to provide a specific and detailed listing of the region(s) and counties of interest. These materials included a Word document with a table for reporting the data, and an Excel spreadsheet with individual tabs for reporting data from each of the regions. The intent with providing these user-friendly survey materials was to make response as easy as possible and also to gather the data in a format that could be easily copied into spreadsheets for data analysis. These survey materials are shown in Attachment B. Once survey materials had been sent, a follow-up phone call was made a week later to ask if there were any questions and to determine if the company was willing to participate in the survey.

Active survey outreach efforts spanned a six-week period, and included sending the initial contact letters, calling sources to establish contact, sending follow-up letters to the proper contact as needed, making follow-up phone calls, sending emails with survey materials, and making phone calls/sending emails to determine if companies would be willing to participate. Fifteen companies participated in the survey, providing information on more than 251 separate wells/tanks.

2.4.1 Analysis of Data Collected via Phone Survey

Fifteen companies responded to the survey, and provided data from more than 251 separate wells/tank batteries. One company sent data for nine representative wells that represented production from 140 separate wells. Other companies sent data for a few sites that were representative of their other wells in that region.

Certain data received in the survey were not used in the analysis. One company provided data for ten wells but no estimates of VOC emissions, and several companies sent data for wells with API gravity less than 40 degrees. Several companies also provided data for wells with a final separator pressure less than 5 psig; this data was not used in the calculations as these low separator pressures are more indicative of wells producing oil and were not consistent with the separator pressures observed in the survey results for the primary condensate producing regions in Texas. Finally, the emissions data generated using non-preferred methods was not included in the analysis. The raw data collected in the ERG survey, along with notes on which data was excluded from the analysis, is provided in Attachment C.

Data was collected from a sufficient number of tank batteries in each target region. ERG developed a region-wide emission factor for each of the five gas-producing regions targeted in the phone survey. This data was sorted by region. Emission factors were calculated for each of the regions. The survey also requested information on any recovery or control methods used at each well. A very high percentage of respondents indicated that they used recovery or control methods on their wells/tanks. For purposes of comparing the survey results with the test results and emission estimates from earlier studies, emission factors for the emissions before the effect of any controls were calculated.

The producers who responded to this survey used a variety of calculation models (testing, E&P Tank, ProMax, WinSim, VMGSim, HYSYS, GOR, and Vasquez Beggs) for estimating flash emissions. ERG examined these results in light of the evaluation of the accuracy of these models presented in "Upstream Oil and Gas Storage Tank Project Flash Emissions Models Evaluation" (TCEQ, 2009)¹⁴ and TCEQ's guidance on calculating flash emissions¹⁵. ERG used only records where the flash emissions calculation method was one of the methods preferred by TCEQ. One producer sent test results for three tanks. Since only the results and no underlying data or test reports were submitted, these three data points were treated as being calculated by a preferred method.

Table 2-10 summarizes the findings from the survey. The data show a clear difference in the emission factors by region.

Region	Total Production Represented in Survey (bbl)	Data Points	Production- Weighted VOC Emission Factor (lbs/bbl)	Arithmetic Average VOC Emission Factor (Ibs/bbl)	Percent of Surveyed Production Controlled
Anadarko	533,419	18	1.63	7.47	99.4%
Eagle Ford	10,538,273	41	11.3	9.41	92.2%

 Table 2-10. Survey Results Using all Valid Survey Data Estimated with

 Preferred Estimation Methods

¹⁴ Texas Commission on Environmental Quality, Upstream Oil and Gas Storage Tank Project Flash Emissions Models Evaluation, 2009,

http://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/ei/20090716-ergi-UpstreamOilGasTankEIModels.pdf

¹⁵ "Calculating Volatile Organic Compounds (VOC) Flash Emissions from Crude Oil and Condensate Tanks at Oil and Gas Production Sites", APDG 5942, May 2012,

http://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/guidance_flashemission.pdf

Table 2-10. Survey Results Using all Valid Survey Data Estimated withPreferred Estimation Methods

Region	Total Production Represented in Survey (bbl)	Data Points	Production- Weighted VOC Emission Factor (Ibs/bbl)	Arithmetic Average VOC Emission Factor (lbs/bbl)	Percent of Surveyed Production Controlled
East Texas	518,691	83	5.91	5.75	82.1%
Permian	245,545	5	10.75	8.13	79.5%
Western Gulf	182,349	28	1.84	5.32	46.5%

2.4.2 Use of Vapor Recovery and Controls to Reduce Emissions

The ERG survey data indicates that companies are installing vapor recovery units (VRU) or control devices (flares or combustors) on their highest producing wells. VRUs may be installed for economic reasons as any vapor recovery equipment installed on a high-producing well will deliver a higher return of saleable product per dollar invested in equipment. Similarly, for companies using flares or combustors to control emissions, these control devices are being used on the highest-producing wells.

Survey data indicated that surveyed companies have installed vapor recovery or control devices on 34% of their wells/tanks, representing 91.1% of their total production. The data indicate that the emissions before controls for nearly all of the wells/tanks that had recovery devices or controls installed is greater than 25 tons per year of VOC. Producers reported that emissions from 5.7% of surveyed production were recovered with VRUs, and emissions from 85.4% of surveyed production were controlled with flares or combustors, and the average percent reduction was 97.6%.

This level of control is much higher than the results reported in the 2010 TCEQ study "Control of VOC Flash Emissions from Oil and Condensate Storage Tanks in East Texas", in which survey respondents reported that 72% of surveyed production in the Beaumont-Port Arthur (BPA) counties were controlled, 25% of surveyed production in the HGB area were controlled, and 9% of surveyed production in the Haynesville Shale counties were controlled. The survey data also shows a much higher percentage of control than was observed in the Barnett Shale Area Special Inventory, where 13.2% of total surveyed production was reported as recovered or controlled.¹⁶ This may be due to the differences in production in the Barnett Shale and Haynesville Shale versus the other regions of Texas. The Barnett Shale and Haynesville Shale both produce a 'dry' gas, with limited condensate production. Therefore, it may not have been economically

¹⁶ These data are shown in Table 17 of this report.

feasible or necessary from a regulatory standpoint at the time this survey was taken to control the emissions from the condensate tanks in the Barnett and Haynesville Shale.

The higher level of control observed in the ERG survey may also be due to the increasing awareness and implementation of recovery and control technologies over time, and the effect of new regulations. The Barnett Shale Inventory and the TCEQ surveys were conducted in 2009, whereas the ERG survey was conducted in 2012 and covers production and emissions in 2011. Title 30 Texas Administrative Code 106.352, Permit by Rule for Oil and Gas Handling and Production Facilities¹⁷, became effective on February 2, 2012, which may account for the higher control percentages observed during this survey.

2.4.3 Self-Selection Bias

For any survey, the researchers need to consider if the respondents have given them data that is representative of all of their operations. ERG specifically requested in the survey materials and phone conversations that companies submit a random, representative sampling of their wells. ERG has no direct knowledge that any of the companies who responded to this survey biased the data that they submitted. However, the percent of surveyed production with emissions being recovered or controlled (91.1%) is very high when compared to the results obtained from the Barnett Shale Area Special Inventory and other studies. In reviewing the differences in the percentage of production that was reported as recovered or controlled in the ERG survey, versus the amount that was reported as controlled in the Barnett Shale Area Special Inventory, it must be noted that the results of the ERG survey were obtained voluntarily, whereas the Barnett Shale Area Special Inventory was a mandatory survey of all producers operating in that region. ERG collected survey data from 15 large and medium sized companies. A significant portion of the larger companies operate the highest producing wells in many regions. Also, larger companies may have the capital to purchase and install control devices, and may also have more resources to respond to surveys.

2.4.4 Innovative Practices that Lower Area Emissions

Two innovative practices in use that have the effect of lowering emissions were identified as part of the survey. During initial phone conversations, two companies declared that they had no tank emissions at upstream sites (well pads) because they no longer routinely used tanks in the field for their day to day operations. While these companies would install a portable liquids tank during the initial phase of well completion, the tank would soon be replaced with piping that collected all gas and condensate from multiple wells in an area and route them to a single gathering station. All gas and liquids would be processed at that station, which utilized vapor recovery and

¹⁷ Texas Commission on Environmental Quality, Rules, http://www.tceq.state.tx.us/rules/indxpdf.html

control equipment such that condensate tank emissions were negligible. This company replaced the traditional tank at the well site with piping and a centralized processing facility.

Another company submitted data with very low emission factors, despite the fact that tank emissions were uncontrolled. When questioned, the company official stated that the emissions factors were low as a result of their operating practices. This company captures as much flash gas as possible and has designed their facilities such that when liquids reach the tanks the pressure has been released to 2 psi [above ambient] allowing flash gas in the liquids to be released prior to the tank, captured by a vapor recovery system, and sent to the gas pipeline. This company also routes the vapors from their storage tanks to a flare. Finally, the emissions from the trucks loading liquids from the field tanks is sent back to the storage tank with vapor balance piping and routed to the flare.

Both of these practices lower the emissions from storage tanks substantially, as they recover or control nearly 100% of the VOC that would normally be emitted in an uncontrolled operation. Ultimately, these potential survey participants did not provide data as part of this survey as they had no upstream tanks and no tank emissions.

2.5 Weighting the Data

2.5.1 Weighting Data based on Method

This study compiled emissions data produced by both testing and emissions estimation methods, with the data coming from four published studies, one TCEQ inventory, and the survey associated with this report. All of this data was evaluated for its accuracy and relative merit in compiling regional and county-specific emission factors. TCEQ's guidance "Calculating Volatile Organic Compounds (VOC) Flash Emissions from Crude Oil and Condensate Tanks at Oil and Gas Production Sites"¹⁸ was used as the basis for weighting the data obtained from testing and the various emissions estimation methods. Data obtained from testing is considered the most accurate source of emissions data, and is weighted the highest. Emissions estimates produced through use of process simulation models, E&P TANK, and the Gas-Oil-Ratio method are weighted in decreasing order of preference, consistent with the TCEQ guidance.

Table 2-11 shows the weighting factors applied to each estimation method.

¹⁸ "Calculating Volatile Organic Compounds (VOC) Flash Emissions from Crude Oil and Condensate Tanks at Oil and Gas Production Sites", APDG 5942, May 2012, http://www.tceq.texas.gov/assets/public/permitting/air/Guidance/NewSourceReview/guidance_flashemission.pdf

Table 2-11. Weighting Factors by Emissions EstimationMethod

Emissions Estimation Method	Weight
Testing	4
Process Simulator (HYSIM, HYSIS, VMG, PROMAX)	2
E&P TANK	1.5
Gas-Oil-Ratio	1

The equation used to derive the regional emission factors is shown below:

 $\begin{array}{l} \mbox{Regional Emission Factor (lbs/bbl)}_{\mbox{Region i}} = [(EF_{\mbox{Region i TESTING}} \times 4) + (EF_{\mbox{Region i PROCESS}} \\ \mbox{SIMULATOR} \times 2) + (EF_{\mbox{Region i E&P TANK}} \times 1.5) + (EF_{\mbox{Region i GAS-OIL-RATIO}} \times 1)]/(4+2+1.5+1) \\ (Eq. 2-1) \end{array}$

Where:

EF Region i TESTING	= emission factor for the region based on testing (lbs/bbl)
${\rm EF}$ Region i PROCESS SIMULATOR	= emission factor for the region based on process simulator (lbs/bbl)
EF Region i E&P TANK	= emission factor for the region based on E&P Tank (lbs/bbl)
EF Region i GAS-OIL-RATIO	= emission factor for the region based on the GOR method (lbs/bbl)

2.5.2 Weighting Data based on Production

In addition to the method weighting discussed above, a production weighted average was used to assess the average emission rate for the wells/tanks in each particular county or region. This approach more accurately reflects the overall total emissions in a region containing a mix of high and low production sites and is appropriate for area source emissions estimation.

For example, if a region contains ten well sites, and there are 5 sites each producing 2 barrels of condensate per day and having measured emissions of 40 lbs/ bbl, and there are another 5 sites each producing 130 barrels per day and having measured emissions of 4 lbs/bbl, by using a production-weighted approach, the average emissions from these 10 wells/tanks is:

 $(5 \times 2 \times 40 + 5 \times 130 \times 4)/(5 \times 2 + 5 \times 130) = 4.55$ lbs VOC/bbl

The straight arithmetic average for these sites is 22 lbs/bbl. The actual total VOC emissions from the ten sites in this region are 3,000 pounds per day, and the total production from the ten sites in the region is 660 barrels. On a region-wide basis, the actual emissions are 3,000/660 = 4.55 lbs/bbl.

A scatter plot of the data points compiled in this report provides a useful visual depiction of the relationship between emissions on a per barrel basis and production at a given well. Figure 2-3 shows the production for each tank on the x-axis and the VOC emission factor for each tank on the y-axis. The data show a clear relationship between low production and high per-barrel emission factors, yet most of the production in any region comes from the wells with high production, which typically have lower per barrel emission factors.

Figure 2-3. Relationship between Production and Emission Factor

2.6 Regional Emission Factors

A two-step process was used in compiling the emissions data into regional emission factors for VOC and HAP. First, data was separated into subgroups by region. Subsequently, data records from each regional subgroup were separated into categories by the estimation method used (testing, process simulator, E&P Tank, GOR). A production weighted average emission factor was calculated for each subgroup for each region. The production-weighted average emission factors for each region were then combined into a single regional emission factor using the weighting factors shown in Table 2-11 as described above. The compiled results of the testing data and estimates from the studies and surveys are shown in the Tables 2-12 through 2-16. Table 2-12 shows the compiled average of emission factors derived from testing. The test results are grouped by region, and a production-weighted average and arithmetic average is calculated for each region. These emission factors show the emissions before the effect of any controls.

Table 2-12. Average Regional VOC Emission Factors Derived from TestingData

Studies	Region	Count of Data Points	Production-Weighted Emission Factor (lbs/bbl)	Arithmetic Average Emission Factor (lbs/bbl)
Flash ^a	Anadarko	4	3.89	5.22
HARC 51C, Flash ^ª , Upstream ^b	Fort Worth	23	12.26	20.67
Flash ^a	Permian	8	4.39	4.34
HARC 51C	Western Gulf	9	16.34	13.72

^a Upstream Oil & Gas Storage Tank Project Flash Emissions Models Evaluation (2009).

^b Upstream Oil & Gas Tank Emissions Measurement (2010).

Table 2-13 shows the compiled emission factors derived from the three studies referenced in this report. These emission factors (all based on E&P TANK, process simulation models, or GOR data) are grouped by region, and a production-weighted average and arithmetic average is calculated for each region. The averages for each region were developed using the weighting factors in Table 2-11. These emission factors show the emissions before the effect of any controls.

Table 2-13. Average Regional VOC Emission Factors Derived from EstimationMethods

Studies	Region	Count of Data Points	Production-Weighted Emission Factor (lbs/bbl)	Arithmetic Average Emission Factor (Ibs/bbl)
Flash ^a	Anadarko	4	14.65	16.36
Control of VOC Flash Emissions ^b	East Texas	21	5.78	5.78
Upstream ^c , Flash ^a	Fort Worth	10	13.69	12.89
Flash ^a	Permian	8	23.51	18.06

^a Upstream Oil & Gas Storage Tank Project Flash Emissions Models Evaluation (2009).

^b Control of VOC Flash Emissions from Oil and Condensate Storage Tanks in East Texas (2010).

^c Upstream Oil & Gas Tank Emissions Measurement (2010).

Table 2-14 shows the compiled average emission factors derived from the ERG 2012 survey responses and the 2009 Barnett Shale Special Area Inventory. In these surveys, producers used direct measurement and estimation methods (E&P TANK, process simulation models, GOR) to estimate emissions from their condensate tanks. However,

for the testing data, only the test results and no underlying data or test reports were submitted. Therefore, the testing data were treated as being calculated by a preferred method and given a weight of 1.5 instead of 4.

These emission estimates are grouped by region, and a production-weighted average and arithmetic average is calculated for each region. The averages for each region were weighted according to the weighting factors in Table 2-11. These emission factors show the emissions before the effect of any controls.

Survey	Region	Count of Data Points	Production- Weighted Emission Factor (Ibs/bbl)	Arithmetic Average Emission Factor (lbs/bbl)
ERG 2012 survey	Anadarko	18	2.49	6.45
ERG 2012 survey	Eagle Ford	41	10.5	10.0
ERG 2012 survey	East Texas	83	3.51	6.22
ERG 2012 survey	Permian	5	6.25	6.08
ERG 2012 survey	Western Gulf	28	4.95	16.1
Barnett Shale Inventory	Fort Worth	1,575	7.54	12.2

 Table 2-14. Average Regional VOC Emission Factors from ERG Survey

 Data and Barnett Shale Inventory Data

Table 2-15 shows the compiled average emission factors when the data from the testing results (Table 2-12), studies (Table 2-13), and the ERG 2012 and Barnett Shale surveys (Table 2-14) is combined. The testing and emission estimate data is grouped by region, and a production-weighted average and an arithmetic average is determined for each region. The production-weighted average and arithmetic average for each region were weighted according to the weighting factors in Table 2-11. As there are no data available for the Palo Duro Basin and the Marathon Thrust Belt, a statewide average is used for these two regions. These emission factors show the emissions before the effect of any controls.

Table 2-15. Average Regional	VOC Emission Factors
------------------------------	----------------------

Region	Count of Data Points	Production-Weighted Emission Factor (Ib/bbl)	Arithmetic Average Emission Factor (Ib/bbl)
Anadarko	26	3.15	5.87
Eagle Ford Shale	41	10.5	10.0
East Texas/Haynesville Shale	104	4.22	5.92
Fort Worth/Barnett Shale	1,604	9.76	16.0
Permian	21	7.07	5.90

Region	Count of Data Points	Production-Weighted Emission Factor (Ib/bbl)	Arithmetic Average Emission Factor (Ib/bbl)
Western Gulf	37	11.0	14.8
Palo Duro ^a	N/A	7.61	9.75
Marathon Thrust Belt ^a	N/A	7.61	9.75

Table 2-15. Average Regional VOC Emission Factors

^a Statewide average.

Figure 2-4 provides the geographical distribution of the data sources used to compile the regional emission factors in Table 2-15 on a county-basis.

Figure 2-4. Condensate Tank Emission Data Sources by County

Figure 2-5 shows the results from Table 2-15 geographically. Determination of which counties are included in each region is from the United States Geological Survey.¹⁹ Counties in the Eagle Ford Shale were identified by the RRC.²⁰ For certain counties, there was sufficient data available to develop a county-specific emission factor based only on the data available for that particular county. However, a careful examination of these county-specific emission factors (see Attachment C) shows that they vary widely within any one region. This may be indicative of the variation in properties of the condensate produced, or it may be due to an inadequate sample size. Due to the variation observed in the county-specific factors and the uncertainties associated with these factors, the regional emission factors presented in Table 2-15 are recommended for developing the state-wide area source inventory.

Figure 2-5. Average Regional Emission Factors, Before Controls

¹⁹ United States Geological Survey, National Oil and Gas Assessment,

http://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx

²⁰ Texas Railroad Commission, Eagle Ford Information, http://www.rrc.state.tx.us/eagleford/

The region-specific condensate tank emission factors can then be assigned on a county basis by allocating each county in the state to one of the regions identified in Table 2-15. The county-level VOC emission factor (both production weighted and arithmetic average) for each county in Texas is shown in Table 2-16.

County	Region	Production Weighted Emission Factor (Ibs/bbl)	Arithmetic Average Emission Factor (Ibs/bbl)
Anderson	East Texas/Haynesville Shale	4.22	5.92
Andrews	Permian	7.07	5.90
Angelina	East Texas/Haynesville Shale	4.22	5.92
Aransas	Western Gulf	11.0	14.8
Archer	Fort Worth/Barnett Shale	9.76	16.0
Armstrong	Palo Duro	7.61	9.75
Atascosa	Eagle Ford Shale	10.5	10.0
Austin	Western Gulf	11.0	14.8
Bailey	Palo Duro	7.61	9.75
Bandera	Fort Worth/Barnett Shale	9.76	16.0
Bastrop	Western Gulf	11.0	14.8
Baylor	Fort Worth/Barnett Shale	9.76	16.0
Вее	Eagle Ford Shale	10.5	10.0
Bell	Western Gulf	11.0	14.8
Bexar	Western Gulf	11.0	14.8
Blanco	Fort Worth/Barnett Shale	9.76	16.0
Borden	Permian	7.07	5.90
Bosque	Fort Worth/Barnett Shale	9.76	16.0
Bowie	East Texas/Haynesville Shale	4.22	5.92
Brazoria	Western Gulf	11.0	14.8
Brazos	Eagle Ford Shale	10.5	10.0
Brewster	Marathon Thrust Belt	7.61	9.75
Briscoe	Palo Duro	7.61	9.75
Brooks	Western Gulf	11.0	14.8
Brown	Fort Worth/Barnett Shale	9.76	16.0
Burleson	Eagle Ford Shale	10.5	10.0
Burnet	Fort Worth/Barnett Shale	9.76	16.0
Caldwell	Western Gulf	11.0	14.8
Calhoun	Western Gulf	11.0	14.8
Callahan	Fort Worth/Barnett Shale	9.76	16.0
Cameron	Western Gulf	11.0	14.8
Camp	East Texas/Haynesville Shale	4.22	5.92
Carson	Anadarko	3.15	5.87
Cass	East Texas/Haynesville Shale	4.22	5.92
Castro	Palo Duro	7.61	9.75
Chambers	Western Gulf	11.0	14.8
Cherokee	East Texas/Haynesville Shale	4.22	5.92
Childress	Palo Duro	7.61	9.75
Clay	Fort Worth/Barnett Shale	9.76	16.0

Table 2-16. County-Level VOC Emission Factors

County	Region	Production Weighted Emission Factor (lbs/bbl)	Arithmetic Average Emission Factor (Ibs/bbl)
Cochran	Permian	7.07	5.90
Coke	Permian	7.07	5.90
Coleman	Fort Worth/Barnett Shale	9.76	16.0
Collin	Fort Worth/Barnett Shale	9.76	16.0
Collingsworth	Palo Duro	7.61	9.75
Colorado	Western Gulf	11.0	14.8
Comal	Western Gulf	11.0	14.8
Comanche	Fort Worth/Barnett Shale	9.76	16.0
Concho	Fort Worth/Barnett Shale	9.76	16.0
Cooke	Fort Worth/Barnett Shale	9.76	16.0
Coryell	Fort Worth/Barnett Shale	9.76	16.0
Cottle	Palo Duro	7.61	9.75
Crane	Permian	7.07	5.90
Crockett	Permian	7.07	5.90
Crosby	Permian	7.07	5.90
Culberson	Permian	7.07	5.90
Dallam	Palo Duro	7.61	9.75
Dallas	Fort Worth/Barnett Shale	9.76	16.0
Dawson	Permian	7.07	5.90
Deaf Smith	Palo Duro	7.61	9.75
Delta	East Texas/Haynesville Shale	4.22	5.92
Denton	Fort Worth/Barnett Shale	9.76	16.0
DeWitt	Eagle Ford Shale	10.5	10.0
Dickens	Permian	7.07	5.90
Dimmit	Eagle Ford Shale	10.5	10.0
Donley	Palo Duro	7.61	9.75
Duval	Western Gulf	11.0	14.8
Eastland	Fort Worth/Barnett Shale	9.76	16.0
Ector	Permian	7.07	5.90
Edwards	Permian	7.07	5.90
El Paso	Permian	7.07	5.90
Ellis	Fort Worth/Barnett Shale	9.76	16.0
Erath	Fort Worth/Barnett Shale	9.76	16.0
Falls	East Texas/Haynesville Shale	4.22	5.92
Fannin	East Texas/Haynesville Shale	4.22	5.92
Fayette	Eagle Ford Shale	10.5	10.0
Fisher	Permian	7.07	5.90
Floyd	Palo Duro	7.61	9.75
Foard	Fort Worth/Barnett Shale	9.76	16.0
Fort Bend	Western Gulf	11.0	14.8
Franklin	East Texas/Haynesville Shale	4.22	5.92
Freestone	East Texas/Haynesville Shale	4.22	5.92
Frio	Eagle Ford Shale	10.5	10.0
Gaines	Permian	7.07	5.90

County	Region	Production Weighted Emission Factor (lbs/bbl)	Arithmetic Average Emission Factor (Ibs/bbl)
Galveston	Western Gulf	11.0	14.8
Garza	Permian	7.07	5.90
Gillespie	Fort Worth/Barnett Shale	9.76	16.0
Glasscock	Permian	7.07	5.90
Goliad	Western Gulf	11.0	14.8
Gonzales	Eagle Ford Shale	10.5	10.0
Gray	Anadarko	3.15	5.87
Grayson	Fort Worth/Barnett Shale	9.76	16.0
Gregg	East Texas/Haynesville Shale	4.22	5.92
Grimes	Eagle Ford Shale	10.5	10.0
Guadalupe	Western Gulf	11.0	14.8
Hale	Palo Duro	7.61	9.75
Hall	Palo Duro	7.61	9.75
Hamilton	Fort Worth/Barnett Shale	9.76	16.0
Hansford	Anadarko	3.15	5.87
Hardeman	Fort Worth/Barnett Shale	9.76	16.0
Hardin	Western Gulf	11.0	14.8
Harris	Western Gulf	11.0	14.8
Harrison	East Texas/Haynesville Shale	4.22	5.92
Hartley	Palo Duro	7.61	9.75
Haskell	Fort Worth/Barnett Shale	9.76	16.0
Hays	Western Gulf	11.0	14.8
Hemphill	Anadarko	3.15	5.87
Henderson	East Texas/Haynesville Shale	4.22	5.92
Hidalgo	Western Gulf	11.0	14.8
Hill	Fort Worth/Barnett Shale	9.76	16.0
Hockley	Permian	7.07	5.90
Hood	Fort Worth/Barnett Shale	9.76	16.0
Hopkins	East Texas/Haynesville Shale	4.22	5.92
Houston	East Texas/Haynesville Shale	4.22	5.92
Howard	Permian	7.07	5.90
Hudspeth	Permian	7.07	5.90
Hunt	East Texas/Haynesville Shale	4.22	5.92
Hutchinson	Anadarko	3.15	5.87
Irion	Permian	7.07	5.90
Jack	Fort Worth/Barnett Shale	9.76	16.0
Jackson	Western Gulf	11.0	14.8
Jasper	Western Gulf	11.0	14.8
Jeff Davis	Permian	7.07	5.90
Jefferson	Western Gulf	11.0	14.8
Jim Hogg	Western Gulf	11.0	14.8
Jim Wells	Western Gulf	11.0	14.8
Johnson	Fort Worth/Barnett Shale	9.76	16.0
Jones	Fort Worth/Barnett Shale	9.76	16.0

County	Region	Production Weighted Emission Factor (lbs/bbl)	Arithmetic Average Emission Factor (Ibs/bbl)
Karnes	Eagle Ford Shale	10.5	10.0
Kaufman	East Texas/Haynesville Shale	4.22	5.92
Kendall	Fort Worth/Barnett Shale	9.76	16.0
Kenedy	Western Gulf	11.0	14.8
Kent	Permian	7.07	5.90
Kerr	Fort Worth/Barnett Shale	9.76	16.0
Kimble	Fort Worth/Barnett Shale	9.76	16.0
King	Permian	7.07	5.90
Kinney	Western Gulf	11.0	14.8
Kleberg	Western Gulf	11.0	14.8
Knox	Fort Worth/Barnett Shale	9.76	16.0
La Salle	Eagle Ford Shale	10.5	10.0
Lamar	East Texas/Haynesville Shale	4.22	5.92
Lamb	Palo Duro	7.61	9.75
Lampasas	Fort Worth/Barnett Shale	9.76	16.0
Lavaca	Eagle Ford Shale	10.5	10.0
Lee	Eagle Ford Shale	10.5	10.0
Leon	Eagle Ford Shale	10.5	10.0
Liberty	Western Gulf	11.0	14.8
Limestone	East Texas/Haynesville Shale	4.22	5.92
Lipscomb	Anadarko	3.15	5.87
Live Oak	Eagle Ford Shale	10.5	10.0
Llano	Fort Worth/Barnett Shale	9.76	16.0
Loving	Permian	7.07	5.90
Lubbock	Permian	7.07	5.90
Lynn	Permian	7.07	5.90
Madison	Western Gulf	11.0	14.8
Marion	East Texas/Haynesville Shale	4.22	5.92
Martin	Permian	7.07	5.90
Mason	Fort Worth/Barnett Shale	9.76	16.0
Matagorda	Western Gulf	11.0	14.8
Maverick	Eagle Ford Shale	10.5	10.0
McCulloch	Fort Worth/Barnett Shale	9.76	16.0
McLennan	Fort Worth/Barnett Shale	9.76	16.0
McMullen	Eagle Ford Shale	10.5	10.0
Medina	Western Gulf	11.0	14.8
Menard	Fort Worth/Barnett Shale	9.76	16.0
Midland	Permian	7.07	5.90
Milam	Eagle Ford Shale	10.5	10.0
Mills	Fort Worth/Barnett Shale	9.76	16.0
Mitchell	Permian	7.07	5.90
Montague	Fort Worth/Barnett Shale	9.76	16.0
Montgomery	Western Gulf	11.0	14.8
Moore	Anadarko	3.15	5.87

 Table 2-16. County-Level VOC Emission Factors

County	Region	Production Weighted Emission Factor (lbs/bbl)	Arithmetic Average Emission Factor (Ibs/bbl)
Morris	East Texas/Haynesville Shale	4.22	5.92
Motley	Palo Duro	7.61	9.75
Nacogdoches	East Texas/Haynesville Shale	4.22	5.92
Navarro	East Texas/Haynesville Shale	4.22	5.92
Newton	Western Gulf	11.0	14.8
Nolan	Permian	7.07	5.90
Nueces	Western Gulf	11.0	14.8
Ochiltree	Anadarko	3.15	5.87
Oldham	Palo Duro	7.61	9.75
Orange	Western Gulf	11.0	14.8
Palo Pinto	Fort Worth/Barnett Shale	9.76	16.0
Panola	East Texas/Haynesville Shale	4.22	5.92
Parker	Fort Worth/Barnett Shale	9.76	16.0
Parmer	Palo Duro	7.61	9.75
Pecos	Permian	7.07	5.90
Polk	Western Gulf	11.0	14.8
Potter	Palo Duro	7.61	9.75
Presidio	Permian	7.07	5.90
Rains	East Texas/Haynesville Shale	4.22	5.92
Randall	Palo Duro	7.61	9.75
Reagan	Permian	7.07	5.90
Real	Fort Worth/Barnett Shale	9.76	16.0
Red River	East Texas/Haynesville Shale	4.22	5.92
Reeves	Permian	7.07	5.90
Refugio	Western Gulf	11.0	14.8
Roberts	Anadarko	3.15	5.87
Robertson	Eagle Ford Shale	10.5	10.0
Rockwall	East Texas/Haynesville Shale	4.22	5.92
Runnels	Fort Worth/Barnett Shale	9.76	16.0
Rusk	East Texas/Haynesville Shale	4.22	5.92
Sabine	East Texas/Haynesville Shale	4.22	5.92
San Augustine	East Texas/Haynesville Shale	4.22	5.92
San Jacinto	Western Gulf	11.0	14.8
San Patricio	Western Gulf	11.0	14.8
San Saba	Fort Worth/Barnett Shale	9.76	16.0
Schleicher	Permian	7.07	5.90
Scurry	Permian	7.07	5.90
Shackelford	Fort Worth/Barnett Shale	9.76	16.0
Shelby	East Texas/Haynesville Shale	4.22	5.92
Sherman	Anadarko	3.15	5.87
Smith	East Texas/Haynesville Shale	4.22	5.92
Somervell	Fort Worth/Barnett Shale	9.76	16.0
Starr	Western Gulf	11.0	14.8
Stephens	Fort Worth/Barnett Shale	9.76	16.0

County	Region	Production Weighted Emission Factor (Ibs/bbl)	Arithmetic Average Emission Factor (Ibs/bbl)
Sterling	Permian	7.07	5.90
Stonewall	Permian	7.07	5.90
Sutton	Permian	7.07	5.90
Swisher	Palo Duro	7.61	9.75
Tarrant	Fort Worth/Barnett Shale	9.76	16.0
Taylor	Fort Worth/Barnett Shale	9.76	16.0
Terrell	Marathon Thrust Belt	7.61	9.75
Terry	Permian	7.07	5.90
Throckmorton	Fort Worth/Barnett Shale	9.76	16.0
Titus	East Texas/Haynesville Shale	4.22	5.92
Tom Green	Permian	7.07	5.90
Travis	Western Gulf	11.0	14.8
Trinity	Western Gulf	11.0	14.8
Tyler	Western Gulf	11.0	14.8
Upshur	East Texas/Haynesville Shale	4.22	5.92
Upton	Permian	7.07	5.90
Uvalde	Western Gulf	11.0	14.8
Val Verde	Permian	7.07	5.90
Van Zandt	East Texas/Haynesville Shale	4.22	5.92
Victoria	Western Gulf	11.0	14.8
Walker	Western Gulf	11.0	14.8
Waller	Western Gulf	11.0	14.8
Ward	Permian	7.07	5.90
Washington	Western Gulf	11.0	14.8
Webb	Eagle Ford Shale	10.5	10.0
Wharton	Western Gulf	11.0	14.8
Wheeler	Anadarko	3.15	5.87
Wichita	Fort Worth/Barnett Shale	9.76	16.0
Wilbarger	Fort Worth/Barnett Shale	9.76	16.0
Willacy	Western Gulf	11.0	14.8
Williamson	Western Gulf	11.0	14.8
Wilson	Eagle Ford Shale	10.5	10.0
Winkler	Permian	7.07	5.90
Wise	Fort Worth/Barnett Shale	9.76	16.0
Wood	East Texas/Haynesville Shale	4.22	5.92
Yoakum	Permian	7.07	5.90
Young	Fort Worth/Barnett Shale	9.76	16.0
Zapata	Western Gulf	11.0	14.8
Zavala	Eagle Ford Shale	10.5	10.0

2.7 Accounting for the Effect of Recovery and Control Devices

The effect of existing vapor recovery and control devices should be accounted for in determining emissions from area sources. However, there is limited information on the use of control devices in the condensate producing regions of Texas, and the quantity of the information varies.

2.7.1 Barnett Shale

The TCEQ Barnett Shale Special Inventory data indicates whether condensate tank emissions are recovered or controlled at each site. This dataset contains 1,575 records covering the 14 counties listed in Table 2-8 above. The Barnett Shale Inventory data indicate that 13.2% of total surveyed production in these 14 counties was controlled, and the average percent reduction was 97.2%. The 2009 RRC condensate production data for these 14 counties is 2,680,019 bbl. The surveyed production (2,479,409 bbl from Table 2-8) represents 92.5% of total 2009 condensate production in these counties. Because the Barnett Shale Inventory was a mandatory survey of all producers in these counties, and had a very high response rate, we can assume that 12.2% (92.5% x 13.2%) of total production in that region should be considered to be controlled by 97.2%, for an overall reduction of 11.8%.

2.7.2 HGB, BPA, and Haynesville Shale

The 2010 study conducted by ENVIRON for TCEQ titled "*Control of VOC Flash Emissions from Oil and Condensate Storage Tanks in East Texas*" reported on control of emissions from oil and condensate storage tanks in three geographic regions of Texas. This study investigated the effect on VOC emissions reductions in the HGB nonattainment area due to the implementation of requirements in Title 30 Texas Administrative Code 115.112(d)(5). The report investigated the possible effects should this same rule be implemented in the BPA area and the Haynesville Shale area. This report also considered the effect of the Texas Permit by Rule (Title 30 TAC 106.352) requirements, which allow a well/tank site with emissions less than 25 tons of VOC per year to qualify for a more streamlined permit. ²¹

This report included results from surveys of the HGB area, the BPA area, the Haynesville Shale, and a TCEQ Region 12 survey for the HGB area. 82 producers responded to these two surveys and submitted control information for 1,940 sites.²²

²¹ The Permit By Rule for Oil and Gas sites (Title 30 TAC 106.352) allows new or modified facilities that meet certain conditions and that emit less than 25 tons per year of VOC to be obtain authorization per rule requirements. It has the effect of encouraging larger oil and gas sources to install control devices on their oil and condensate tanks so as to limit emissions.

²² There is a small overlap in data collected for the HGB area (Table ES-3 of the report). It does not affect the results, as the overlap has been accounted for in analyzing the data.
The data collected for this report²³ indicated that 25% of the surveyed production in the HGB area was controlled, 9% of the surveyed production in the Haynesville Shale area was controlled, and 72% of the surveyed production in the BPA area was controlled. The high surveyed percentage of controlled production in the BPA area can be attributed to a group of large condensate producing sites (accounting for more than 1000 bbl/day) equipped with a suite of control devices. These sites accounted for approximately half of the surveyed BPA area production and significantly contribute to the high percentage of surveyed controlled production.

This study also requested information from producers about tank emissions controls. When this information is combined with production information, it gives an estimate of the percent of total surveyed production in each of the surveyed areas that is controlled.

2.7.3 Calculation of Control Factor

Each region-specific or county-specific control factor should reflect the percentage of production in that region/county that was reported as controlled per the survey. For the percentage of production that was not reported in these surveys, instead of assuming this production is uncontrolled, a default control percentage is applied. The assumed default control factor for the production not reported in these surveys was developed from the TCEQ Barnett Shale Special Inventory data. The large sample size of this special inventory data combined with the characteristics of the Barnett Shale formation represents a conservative control estimate.

To calculate an overall control factor, a multi-step calculation was developed that accounts for reported versus unreported survey condensate production. This calculation is outlined for the HGB area in detail below; the same calculation was employed with area-specific data for the other areas. The calculation methodology was as follows:

- 1. 68 % of HGB condensate production was reported in the survey.
 - a. 25% of reported production is controlled at a 95% level
 - b. 75% of reported production is not controlled
- 2. 32 % of HGB production data was not reported in the survey
- 3. To account for the different categories of data, each category will be treated separately and the results summed to produce the control factor.
 - a. For the controlled category, category 1a, the basic formula is:
 - i. Portion of control factor = (percent of production represented by category) * (percent of controlled production) * (control efficiency)
 - ii. For category 1a, this equals: (0.680*0.25*0.95) = 0.161 or 16.1%
 - b. For the category where production was not reported, category 2, default data is assumed and the basic formula is:

²³ TCEQ provided ERG with three spreadsheets containing the survey data obtained from the ENVIRON surveys.

- i. Portion of control factor = (percent of production represented by category) * (percent of controlled production, default from Barnett Shale special inventory) * (control efficiency, default from Barnett Shale special inventory)
- ii. For category 2, this equals: (0.320*0.122*0.972) = 0.0379 or 3.8%
- c. Total control for 100% of production in the HGB area is therefore the sum of portion of controls from categories 1a and 2, or (16.1+3.8) % or 19.9%.

Table 2-17 below presents the findings of this analysis and includes a recommended control factor for each region.

2.7.4 ERG 2012 Survey

The ERG 2012 survey collected data from 15 companies for 251 sites in 50 counties. Data from 175 of these sites was used in calculating results. The survey data show that emissions from 91.1% of all surveyed production was either recovered with a VRU or controlled with a flare or combustor, and the average percent reduction was 97.6%. These are exceptionally high percentages when compared with the amount of production reported as controlled in the Barnett Shale Inventory and the TCEQ 2010 study above. The ERG 2012 survey data was voluntary, and may not be representative of all producers or other counties in the regions surveyed. This difference may also be due to the characteristics of the Barnett Shale and Haynesville Shale formations versus the other regions of Texas. The Barnett Shale and Haynesville Shale both produce a 'dry' gas, with little condensate production. Therefore, it may not have been economical or necessary from a regulatory standpoint at the time this survey was taken to control the emissions from the condensate tanks in the Barnett and Haynesville Shale.

The higher level of control observed in the ERG survey may also be due to the increasing implementation of recovery and control technologies over time, and the effect of new regulations limiting air pollutant emissions in specific areas. The Barnett Shale Inventory and the TCEQ surveys were conducted in 2009, whereas the ERG survey was conducted in 2012 and covers production and emissions in 2011. Title 30 Texas Administrative Code 106.352, Permit by Rule for Oil and Gas Handling and Production Facilities²⁴, became effective on February 2, 2012, which may account for the higher control percentages observed during this survey.

²⁴ Texas Commission on Environmental Quality, Rules, http://www.tceq.state.tx.us/rules/indxpdf.html

Table 2-17. Percentage of Surveyed Production with Tank Emissions Controlled in the HGB, BPA, andHaynesville Shale Areas

Region (counties)	2009 Total Production Reported to RRC ^a (bbl)	Number of Sites/Tank Batteries Surveyed ^b	Total Surveyed Production ^c	Total Controlled Production Reported in Survey ^d (bbl)	Percent of Reported Production That is Controlled ^d (%)	Percent of Production Not Reported in the Survey ^e (%)	Control Efficiency (%)	Control Factor (%)
Houston-Galveston- Brazoria (Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, Waller)	3,436,859	180	2,335,837	583,462	25.0	32.0	95	19.9
Beaumont - Port Arthur (Hardin, Jefferson, Orange)	5,456,431	26	1,196,723	863,250	72.1	78.1	90	23.5
Haynesville Shale (Gregg, Harrison, Marion, Nacogdoches, Panola, Rusk, San Augustine, Smith, Shelby, Upshur)	5,445,378	523	2,018,527	182,525	9.04	62.9	90	10.5
Barnett Shale (Clay, Cooke, Denton, Erath, Hood, Jack, Johnson, Montague, Palo Pinto, Parker, Somervell, Stephens, Tarrant, Wise) ^f	2,680,019	1,575	2,478,858	326,545	13.2	7.5	97.2	11.8

^a Data for 2009 condensate production from these counties is from a production data query at the Railroad Commission of Texas website.

^b Data for the number of sites/tank batteries surveyed in the HGB, BPA, and Haynesville Shale areas comes from Tables 14a and 14b of the "Control of VOC Flash Emissions from Oil and Condensate Storage Tanks in East Texas" (TCEQ, 2010) report.

^c Data for the total surveyed production for the HGB, BPA, and Haynesville Shale areas comes from Table 8 of the "Control of VOC Flash Emissions from Oil and Condensate Storage Tanks in East Texas" report.

^d Data for the total controlled production for the HGB, BPA, and Haynesville Shale areas comes from spreadsheets provided to ERG by TCEQ.

^e This percentage is derived from the 2009 total production reported to RRC (column 2) and the total surveyed production (column 4).

^f The data for the Barnett Shale counties comes from the TCEQ Barnett Shale Special Inventory (Table 2-8 and Attachment C of this report).

In assessing whether the surveyed data is representative of all basin operations, ERG has no direct knowledge that any of the companies who responded to this survey biased the data that they submitted. However, as noted above, the percent of surveyed production with emissions being recovered or controlled (91.1%) is very high when compared to the results obtained from the Barnett Shale Area Special Inventory and other studies. ERG collected survey data from 15 large and medium sized companies. A significant portion of the larger companies operate the highest producing wells in many regions. Also, larger companies may have the capital to purchase and install control devices, and may also have more resources to respond to surveys.

The figures for surveyed production as a percentage of total production reported by the RRC also indicate that the survey counts as 'condensate' a significant percentage of liquids production that the RRC considers to be oil. Although ERG requested data for condensate production, data was also requested for wells producing liquids with an API gravity greater than 40 degrees. Since the RRC condensate production values are ultimately used for TCEQ area source emissions inventory development, survey data was reviewed and outlier data suspected of representing oil production (e.g., extremely low separator pressure) was not used for emissions and control factor development. The majority of outlier data appeared in the Permian Basin region, where oil production is at least 100 times greater than condensate production.²⁵ Survey responses for certain basins in the state captured a limited amount of basin production. With the varying amount of data available for analysis, uncertainties exist about applying the control factor from the surveyed data to the remainder of condensate production in those counties and areas.

Table 2-18 shows the control information developed from the ERG survey data.

2.8 Summary of Findings and Recommended Emission Factors

Analysis of data from four studies and two surveys indicates that there exists a distinct regional variation in emissions from condensate storage tanks across the oil and gas producing regions of Texas. Emission estimates from testing and software models were considered and each of these data sources has limitations.

Survey data indicate that producers are installing recovery and control devices on an increasing percentage of their condensate wells. The Barnett Shale Inventory data indicates that emissions from 12.2% of total surveyed production were controlled, and data from the 15 producers participating in the ERG 2012 survey indicated that emissions from 91.0% of their total production was recovered or controlled. Other innovative techniques, such as piping all production directly to a centralized processing facility, or using multi-stage separators with ultra-low final stage pressure drop, also

²⁵ Railroad Commission of Texas, http://www.rrc.state.tx.us/permianbasin/index.php

reduce emissions from condensate production at area sources. An accurate assessment of area source emissions will need to account for the effect of these techniques, and for any increase in their implementation over time.

ERG recommends use of the uncontrolled, production-weighted VOC emission factors in Table 2-16 when calculating the emissions from area source condensate production. Application of the control factors to the percentage of surveyed, controlled condensate production presented in Table 2-17 is recommended for the HGB, BPA, Haynesville Shale, and Barnett Shale counties listed. Despite the availability of ERG 2012 survey data for other regions as shown in Table 2-18, the 11.8% control factor derived from the comprehensive Barnett Shale Inventory is recommended for the remainder of condensate production in these regions and throughout the state until additional data for a large number of producers in the other regions can be obtained. These emission reduction factors will capture the effect of emission recovery and control devices that producers have installed on their production equipment in the counties listed, while conservatively estimating emissions for the remainder of condensate production.

Alternatively, the control factors presented in both Tables 2-17 and 2-18 can be applied to the percentage of surveyed, controlled condensate production for the counties in each region. For the remainder of production, application of the 11.8% control factor derived from the Barnett Shale Inventory is recommended.

Table 2-18. Surveyed Production, Total Production, Percent of Surveyed Production Controlled, and Control Factor, by Region

Region	Total Production Represented in Survey (bbl)	Total Annual Production ^a (bbl)	Percent of 2011 Production Represented by the Survey	Total Controlled Production Reported in Survey (bbl)	Percent of Surveyed Production Controlled	Control Efficiency (%)	Control Factor (%) ^b	Alternate Control Factor (%) ^c
Anadarko	533,419	8,609,960	6.2	530,324	99.4	97.9	6.03	17.1
Eagle Ford	10,538,273	24,343,253	43.3	9,716,987	92.2	98.5	39.3	46.0
East Texas	518,691	4,681,732	11.1	425,644	82.1	98.1	8.92	19.4
Permian	245,545	2,036,996	12.1	195,275	79.5	94.7	9.08	19.5
Western Gulf	182,349	18,241,171	1.0	84,785	46.5	98.0	0.46	12.2

^a Data for 2009 condensate production from the Barnett Shale area and 2011 condensate production for the other five regions is from the RRC. ^b Control factor assumes that only the surveyed production is controlled.

^c Control factor assumes that surveyed production is controlled at the surveyed control rate, and that the unsurveyed production is controlled at a default rate of 11.8 percent.

3.0 Hazardous Air Pollutant Emissions from Condensate Storage Tanks

As part of the study to refine the condensate tank VOC emission factor used in the TCEQ area source inventory, ERG accumulated a significant amount of data on emissions of benzene, toluene, ethylbenzene, and xylene (BTEX) from condensate storage tanks. This data was obtained from the 2006 HARC study, the Barnett Shale Area Special Inventory Phase II survey of producers, and E&P TANK report data submitted by producers in response to the ERG 2012 survey. ERG determined that the amount and quality of this data was sufficient to allow development of region-specific emission factors for BTEX emissions from storage tanks for four geographic regions in the state. These four regions are: Eagle Ford Shale, East Texas/Haynesville Shale, Bend Arch-Fort Worth/Barnett Shale, and Western Gulf. These regions are shown in Figure 2-1 above.

3.1 BTEX Emissions Data Derived from Testing

The researchers who conducted the study "VOC Emissions from Oil and Condensate Storage Tanks" (Houston Advanced Research Center, 2006, and Texas Environmental Research Consortium, 2009)²⁶ also made measurements of BTEX content of the emissions from each of the oil and condensate storage tanks. The report provided data for the weight percent of benzene, toluene, ethylbenzene, and xylene in the tank vent gas; data on the weight percent of VOC in the tank vent gas; the liquid production in barrels per day; and the VOC emissions in pounds per day and pounds per barrel. ERG re-examined the data from the sites examined in the HARC 2006 study. Although 27 sites produce liquids having an API gravity of 40 degrees or greater, only data from the 22 sites designated as being condensate is considered. In this analysis, three data points were removed from the data set as was done for the VOC emission factor development process as described above. An emission factor for each of the remaining 19 sites was calculated. Table 2-1 (above) and Table 3-1 (below) show the measurement data from the HARC 2006 study for these 19 condensate tanks.

Tank Battery	Weight % VOC	Weight % Benzene	Weight % Toluene	Weight % Ethylbenzene	Weight % Xylene
2	47	0.34	0.53	0.04	0.21
3	62	0.63	1.10	0.06	0.46
4	57	0.57	1.02	0.06	0.41
5	70	0.75	1.32	0.07	0.55
6	65	0.49	0.56	0.03	0.14
13	81	0.19	0.40	0.01	0.14
14	53	0.13	0.33	0.02	0.16

 Table 3-1. VOC and BTEX Content in the Vent Gas

²⁶ Houston Advanced Research Center, VOC Emissions from Oil and Condensate Storage Tanks, October 31, 2006. <u>http://files.harc.edu/Projects/AirQuality/Projects/H051C/H051CFinalReport.pdf</u>

Tank Batton	Weight % \/OC	Weight %	Weight %	Weight %	Weight %
Tank Battery	Weight % VOC	Benzene	Toluene	Ethylbenzene	Xylene
15	82	0.18	0.25	0.01	0.09
16	85	0.20	0.41	0.02	0.19
18	70	0.23	0.65	0.03	0.38
19	77	0.25	0.58	0.02	0.25
20	89	0.17	0.35	0.01	0.18
23	81	0.39	1.08	0.03	0.48
24	70	0.19	0.67	0.22	0.36
27	86	0.27	0.83	0.02	0.33
28	55	1.07	0.68	0.07	0.28
29	83	0.28	0.10	0.02	0.03
30	62	1.35	0.67	0.03	0.16
32	87	0.44	0.48	0.03	0.19

Table 3-1. VOC and BTEX Content in the Vent Gas

Emission factors in terms of lbs/bbl can be calculated with the following formula:

 $\label{eq:happendix} \begin{array}{l} HAP \ Pollutant_i \ (lbs/bbl) = (weight \ \% \ HAP \ Pollutant_i / weight \ \% \ VOC_i) \times VOC \ Emissions_i \ (lbs/bbl) \end{array}$

(Eq. 3-1)

Table 3-2 shows the VOC and BTEX emission factors for these 19 sites. As all data was obtained through testing, preferential weighting is not used to calculate the average emission factors.

Tank Battery Site #	Region	VOC Emission Factor (lbs/bbl)	Benzene Emission Factor (lbs/bbl)	Toluene Emission Factor (lbs/bbl)	Ethylbenzene Emission Factor (lbs/bbl)	Xylene Emission Factor (lbs/bbl)
2	Western Gulf	3.65	0.0264	0.0412	0.0031	0.0163
3	Western Gulf	7.92	0.0805	0.1405	0.0077	0.0588
4	Western Gulf	0.78	0.0078	0.0140	0.0008	0.0056
5	Western Gulf	0.67	0.0072	0.0126	0.0007	0.0053
6	Western Gulf	2.96	0.0223	0.0255	0.0014	0.0064
13	Fort Worth	39.23	0.0920	0.1937	0.0048	0.0678
14	Fort Worth	29.51	0.0724	0.1837	0.0111	0.0891
15	Fort Worth	11.99	0.0263	0.0366	0.0015	0.0132
16	Fort Worth	60.58	0.1425	0.2922	0.0143	0.1354
18	Fort Worth	7.34	0.0241	0.0682	0.0031	0.0398
19	Fort Worth	13.16	0.0427	0.0991	0.0034	0.0427
20	Fort Worth	30.43	0.0581	0.1197	0.0034	0.0615
23	Fort Worth	5.56	0.0268	0.0741	0.0021	0.0329

Table 3-2. VOC and BTEX Emission Factors

Tank Battery Site #	Region	VOC Emission Factor (lbs/bbl)	Benzene Emission Factor (lbs/bbl)	Toluene Emission Factor (lbs/bbl)	Ethylbenzene Emission Factor (lbs/bbl)	Xylene Emission Factor (lbs/bbl)
24	Fort Worth	4.22	0.0115	0.0404	0.0133	0.0217
27	Fort Worth	14.39	0.0452	0.1389	0.0033	0.0552
28	Western Gulf	4.17	0.0811	0.0516	0.0053	0.0212
29	Western Gulf	33.68	0.1136	0.0406	0.0081	0.0122
30	Western Gulf	6.11	0.1330	0.0660	0.0030	0.0158
32	Western Gulf	63.49	0.3211	0.3503	0.0219	0.1387
Production-Weighted Average Emission Factor (Ibs/bbI)			0.0864	0.0981	0.0063	0.0387
Arithmetic (lbs/bbl)	Average Emission	Factor	0.0702	0.1047	0.0059	0.0442

Table 3-2. VOC and BTEX Emission Factors

3.2 BTEX Emissions Data Derived from the Barnett Shale Area Special Inventory, Phase II (2009)

TCEQ provided ERG with data from the "Barnett Shale Area Special Inventory, Phase II 2009" (Barnett Shale Inventory) information in spreadsheet format. The Barnett Shale Inventory data contains records of condensate tanks with reported condensate production rates and calculated BTEX emissions. ERG analyzed the BTEX emissions data and developed emission factors for condensate tanks in the Bend-Arch-Fort Worth and Barnett Shale counties. The data analysis was similar to that done for VOC for the entire Barnett Shale region. All records with emission factors above 140 lbs/bbl were rejected. Only records using the preferred estimation methods for flashing emissions (direct measurement, process simulator, E&P TANK, GOR) were analyzed. A production-weighted average of the emission factors, before controls, was calculated for each HAP pollutant as shown in Table 3-3. The data is grouped by estimation method, and a production-weighted average and an arithmetic average is used in determining an emission factor for each estimation method. The production-weighted average and arithmetic average for each estimation method were weighted according to the weighting factors in Table 2-11.

Table 3-3. Condensate Tank BTEX Emission Factor Estimates Using Datafrom the Barnett Shale Phase II 2009 Inventory

Emission Calculation Methods	Pollutant	Total Emissions (lbs)	Total Production (bbl)	Production- Weighted Average Emission Factor (lbs/bbl)	Arithmetic Average Emission Factor (lbs/bbl)
Flash Emissions: Process Simulator Models, E&P TANK, Direct Measurement, GOR			723,298	0.019	0.084
	Toluene	28,926	734,626	0.042	0.13
Working and Breathing Emissions: E&P TANK, EPA TANKS	Ethylbenzene	2,057	310,139	0.011	0.036
Program, Other	Xylene	20,047	730,722	0.067	0.20

3.3 BTEX Emissions Data Derived from E&P TANK Reports Submitted in Response to the ERG Survey

One respondent to the ERG Survey provided paper copies of the E&P Tank V 2.0 Calculation Reports for 85 well/tank sites. The E&P TANK reports contain detailed information on a tank, its equipment, and its emissions, including: API gravity, separator pressure, separator temperature, and annual liquids production; and annual emissions of methane, non-methane volatile organic compounds, benzene, toluene, ethylbenzene, and xylene. As E&P TANK is one of the methods preferred by TCEQ for calculating flashing, working, and breathing emissions, this data was used in evaluating BTEX emissions in the three regions (Eagle Ford Shale, East Texas/Haynesville Shale, and Western Gulf) in which the tanks are located. Eight sites produced liquids having an API gravity of less than 40 degrees, so these sites were removed from the dataset. Data from the remaining 77 records is shown in Table 3-4.

Region	County	API Gravity	Separator Pressure	Separator Condensate Pressure Production		Emission Factors (lbs/bbl)					
	,	(deg.)	(psig)	(bbl)	voc	Benzene	Toluene	Ethylbenzene	Xylene		
Eagle Ford	Fayette	49.2	25.4	2,555	0.53	0.0039	0.0078	0.0008	0.0047		
Eagle Ford	Fayette	49.2	25.2	2,811	0.52	0.0043	0.0078	0.0007	0.0050		
Eagle Ford	Fayette	49.2	28.5	2,190	0.58	0.0046	0.0091	0.0009	0.0055		
Eagle Ford	Lavaca	40.8	35	949	0.27	0.6322	0.0358	0.0243	0.0084		
Eagle Ford	Leon	45.2	14	1,460	0.92	0.0288	0.0055	0.0014	0.0055		
Eagle Ford	Leon	45.2	52.9	219	1.28	0.0822	0.0183	0.0091	0.0183		
Eagle Ford	Leon	45.2	108.9	256	1.33	0.0783	0.0157	0.0078	0.0235		
Eagle Ford	Leon	45.2	64.1	146	1.51	0.1096	0.0274	0.0137	0.0274		
Eagle Ford	McMullen	54.7	48	14,856	1.51	0.0059	0.0125	0.0003	0.0040		
Eagle Ford	McMullen	54.7	48	8,322	1.80	0.0077	0.0166	0.0002	0.0053		
Eagle Ford	McMullen	59.3	38	220,570	3.91	0.0226	0.0336	0.0007	0.0156		
Eagle Ford	McMullen	59.3	38	86,943	3.94	0.0228	0.0340	0.0008	0.0157		
Eagle Ford	Webb	64.5	65	149,139	3.42	0.0139	0.0172	0.0003	0.0077		
Eagle Ford	Webb	64.5	200	276,816	3.47	0.0142	0.0176	0.0003	0.0079		
East Texas	Anderson	42	58.8	37	1.64	0.1644	0.1644	0.0205	0.1096		
East Texas	Cherokee	45.2	142.4	146	1.64	0.1096	0.0274	0.0137	0.0274		
East Texas	Cherokee	45.2	76.9	256	1.33	0.0783	0.0157	0.0078	0.0235		
East Texas	Cherokee	45.2	84.9	110	1.46	0.1096	0.0365	0.0183	0.0365		
East Texas	Freestone	60	205	4,271	12.96	0.1892	0.1321	0.0037	0.0239		
East Texas	Freestone	60	75.4	329	16.32	0.3592	0.2740	0.0061	0.0548		
East Texas	Freestone	60	69.3	1,679	14.71	0.2418	0.1739	0.0048	0.0322		
East Texas	Freestone	60	81.2	730	15.21	0.2767	0.2055	0.0055	0.0384		
East Texas	Freestone	60	77.6	1,971	14.50	0.2334	0.1674	0.0051	0.0315		
East Texas	Harrison	53.5	100	1,095	0.20	0.0091	0.0018	0.0004	0.0018		
East Texas	Henderson	50.4	40	219	0.46	0.0457	0.0183	0.0057	0.0091		
East Texas	Henderson	50.4	267.3	475	0.46	0.0253	0.0084	0.0032	0.0042		
East Texas	Henderson	50.4	78.1	3,650	0.36	0.0077	0.0027	0.0010	0.0011		
East Texas	Henderson	50.4	45.8	621	0.42	0.0193	0.0064	0.0024	0.0032		
East Texas	Henderson	50.4	34	730	0.44	0.0192	0.0082	0.0024	0.0027		
East Texas	Henderson	50.4	36	803	0.42	0.0174	0.0075	0.0022	0.0025		

Table 3-4. Condensate Tank BTEX Emission Factor Estimates Using Data from E&P TANK ReportsSubmitted for ERG Survey

Region	County	API Gravity	Separator Pressure	Condensate Production	Emission Factors (lbs/bbl)					
hegion	county	(deg.)	(psig)	(bbl)	VOC	Benzene	Toluene	Ethylbenzene	Xylene	
East Texas	Houston	50.6	40	219	0.18	0.0183	0.0091	0.0018	0.0051	
East Texas	Houston	50.6	146.5	256	0.23	0.0157	0.0078	0.0016	0.0043	
East Texas	Houston	50.6	54.5	183	0.22	0.0219	0.0110	0.0022	0.0061	
East Texas	Houston	50.6	59.2	621	0.19	0.0064	0.0032	0.0006	0.0018	
East Texas	Limestone	42	40	183	0.55	0.0767	0.0438	0.0015	0.0219	
East Texas	Limestone	42	69.8	73	1.10	0.1370	0.1096	0.0027	0.0548	
East Texas	Limestone	42	77.3	37	1.64	0.1644	0.1644	0.0033	0.1096	
East Texas	Limestone	42	66.2	110	0.91	0.1096	0.0731	0.0022	0.0365	
East Texas	Limestone	42	64.3	183	0.55	0.0767	0.0438	0.0015	0.0329	
East Texas	Marion	45.2	20	876	0.98	0.0365	0.0068	0.0023	0.0091	
East Texas	Marion	45.2	50	1,424	0.91	0.0281	0.0056	0.0014	0.0056	
East Texas	Marion	45.2	40	840	1.02	0.0381	0.0071	0.0024	0.0095	
East Texas	Marion	45.2	40	219	1.37	0.0822	0.0183	0.0091	0.0183	
East Texas	Nacogdoches	58.8	807	110	1.28	0.0548	0.0731	0.0183	0.0913	
East Texas	Navarro	46.3	38	6,023	3.22	0.0306	0.0186	0.0007	0.0040	
East Texas	Panola	45.2	76	1,497	0.88	0.0281	0.0053	0.0013	0.0053	
East Texas	Panola	45.2	102	4,709	0.76	0.0174	0.0030	0.0008	0.0038	
East Texas	Panola	45.2	99.5	1,314	0.91	0.0304	0.0061	0.0015	0.0061	
East Texas	Panola	45.2	90	2,044	0.88	0.0245	0.0039	0.0010	0.0049	
East Texas	Panola	45.2	40.2	1,825	0.91	0.0252	0.0044	0.0011	0.0055	
East Texas	Rusk	55.5	105	21,681	6.46	0.0540	0.0564	0.0017	0.0167	
East Texas	Rusk	55.5	40	183	6.36	0.0548	0.0548	0.0034	0.0219	
East Texas	San Augustine	58.8	168	146	1.10	0.0411	0.0548	0.0137	0.0685	
East Texas	Shelby	58.8	40	1,460	0.33	0.0082	0.0082	0.0014	0.0096	
East Texas	Upshur	55.6	230	1,095	20.31	0.2466	0.0731	0.0037	0.0511	
East Texas	Upshur	55.6	112.4	4,818	21.02	0.2665	0.0797	0.0037	0.0556	
East Texas	Upshur	55.6	233.2	730	19.78	0.2411	0.0712	0.0027	0.0493	
East Texas	Upshur	55.6	222.7	1,095	21.39	0.2612	0.0767	0.0037	0.0530	
East Texas	Upshur	55.6	215	3,030	20.73	0.2535	0.0753	0.0040	0.0522	
Western Gulf	Liberty	49.9	50	511	1.06	0.0352	0.0783	0.0039	0.0391	

Table 3-4. Condensate Tank BTEX Emission Factor Estimates Using Data from E&P TANK ReportsSubmitted for ERG Survey

Region	County	API Gravity	Separator Pressure	Condensate Production	Emission Fac	ctors (lbs/bbl)			
		(deg.)	(psig)	(bbl)	VOC	Benzene	Toluene	Ethylbenzene	Xylene
Western Gulf	Liberty	53.9	25	475	1.35	0.0126	0.0421	0.0042	0.0337
Western Gulf	Newton	59.8	70	6,607	3.55	0.0061	0.0127	0.0009	0.0070
Western Gulf	Newton	59.8	70	2,373	3.57	0.0059	0.0126	0.0008	0.0067
Western Gulf	Nueces	49.2	20	6,789	0.36	0.0024	0.0044	0.0003	0.0027
Western Gulf	Nueces	49.2	20	1,935	0.60	0.0052	0.0093	0.0010	0.0062
Western Gulf	Nueces	51.9	35	3,723	0.59	0.0038	0.0064	0.0005	0.0043
Western Gulf	Orange	40.9	40	35,770	0.18	0.0003	0.0008	0.0001	0.0004
Western Gulf	Orange	40.9	40	1,351	0.47	0.0015	0.0044	0.0005	0.0030
Western Gulf	San Patricio	58.1	20	61,466	58.03	0.4031	0.3360	0.0257	0.1990
Western Gulf	Starr	49.2	213.8	438	1.05	0.0137	0.0320	0.0046	0.0183
Western Gulf	Starr	49.2	213.8	1,095	0.69	0.0073	0.0146	0.0018	0.0091
Western Gulf	Starr	49.2	215.7	949	0.74	0.0084	0.0148	0.0021	0.0105
Western Gulf	Wharton	47.2	30	10,001	0.60	0.0052	0.0126	0.0004	0.0060
Western Gulf	Wharton	47.2	32	2,519	0.85	0.0095	0.0222	0.0008	0.0111
Western Gulf	Wharton	47.2	31	767	1.12	0.0183	0.0470	0.0026	0.0235
Western Gulf	Wharton	47.2	27	3,650	0.75	0.0077	0.0181	0.0005	0.0088
Western Gulf	Wharton	47.2	25	1,570	0.89	0.0115	0.0280	0.0013	0.0140
Arithmetic Averag	Arithmetic Average Emission Factor (lbs/bbl)						0.0438	0.0040	0.0230
Production-Weigh	ted Average Emissi	on Factor (lk	s/bbl)			0.0465	0.0441	0.0022	0.0227

Table 3-4. Condensate Tank BTEX Emission Factor Estimates Using Data from E&P TANK ReportsSubmitted for ERG Survey

3.4 Summary of Findings and Recommended Regional BTEX Emission Factors

ERG compiled emission factor data for each region for which data was available using the data from the testing results (Table 3-2), Barnett Shale Area Special Inventory (Table 3-3), and the E&P TANK reports from the ERG survey (Table 3-4). Table 3-5 shows the production-weighted average emission factors for each region, before the effect of any controls. Table 3-6 shows the arithmetic average emission factors for each region, before the effect of any controls. A statewide average emission factor can be used in estimating BTEX emissions from condensate tanks in the other regions of the state (Anadarko, Palo Duro, Permian, and Marathon Thrust Belt).

 Table 3-5. Production-Weighted Average Regional BTEX Emission Factors, from

 Testing Data, Barnett Shale Inventory, and Survey Data

Region	Number of Data	Production-Weighted Average Emission Factors (lbs/bbl)						
	Points	Benzene	Toluene	Ethylbenzene	Xylene			
Eagle Ford	14	0.0181	0.0238	0.0005	0.0108			
East Texas	45	0.0914	0.0512	0.0023	0.0190			
Fort Worth	537	0.0164	0.0351	0.0068	0.0433			
Western Gulf	30	0.0866	0.0829	0.0063	0.0429			
All Other Counties	-	0.0385	0.0494	0.0063	0.0466			

Table 3-6. Arithmetic Average Regional BTEX Emission Factors, from TestingData, Barnett Shale Inventory, and Survey Data

Region	Number of Data	Arithmetic Average Emission Factors (lbs/bbl)						
	Points	Benzene	Toluene	Ethylbenzene	Xylene			
Eagle Ford	14	0.0736	0.0185	0.0044	0.0110			
East Texas	45	0.0968	0.0537	0.0044	0.0270			
Fort Worth	537	0.0956	0.1574	0.0222	0.1571			
Western Gulf	30	0.0562	0.0552	0.0041	0.0244			
All Other Counties	-	0.0998	0.1389	0.0161	0.1491			

4.0 Recommendations for Future Condensate Tank Investigations

ERG makes the following recommendations with respect to future investigations.

- The timing of this survey coincided with the requirement for many producers to file information with EPA in compliance with Subpart W of the Greenhouse Gas rules. Based upon discussions with survey recipients, this had a negative impact on survey participation by producers.
- If high participation rates are required, ERG recommends that the TCEQ consider collecting information from oil and gas producers through mandatory information collection requests. If mandatory surveys are not feasible, then any voluntary survey should be initiated with a list of the environmental contacts at each of the companies to be surveyed.
- A consistent definition of condensate based on API gravity should be developed by TCEQ in combination with the RRC so that the most appropriate emission factors are applied to tank liquids, including those tanks that store what operators consider to be a combination of oil and condensate.

5.0 Natural Gas Composition Data Collection and Analysis

In June of 2012, ERG staff visited TCEQ's office in Austin to review annual point source emissions inventory reports submitted by facilities throughout Texas identified as having dehydrators on site. The purpose of this visit was to obtain copies of GLYCalc reports to obtain natural gas composition data. GLYCalc is a software tool used to estimate emissions from dehydrators. Required GLYCalc inputs include natural gas composition data, temperature, and pressure.

TCEQ originally identified a possible 368 facilities across the state with dehydrators. ERG reviewed these files and obtained approximately 240 inventory reports related to dehydrator emissions, including many GLYCalc reports. These reports were reviewed and all incomplete reports were flagged and set aside. These incomplete reports did not contain natural gas stream composition data, or contained data in a format inconsistent with the GLYCalc reporting or output forms and were not evaluated further.

Ultimately, ERG was able to compile complete GLYCalc data for 157 sites located in 64 counties. Based on TCEQ's initial identification of 368 facilities, there are 101 counties in Texas that contain sites with dehydrators that submit an annual point source emissions inventory.

The following constituents were available in the GLYCalc natural gas stream composition data (% volume):

- Water,
- Carbon Dioxide (CO₂),
- Hydrogen Sulfide,
- Nitrogen,
- Methane,
- Ethane,
- Propane,
- Isobutane,
- n-Butane,
- Isopentane,
- n-Pentane,
- Cyclopentane,
- n-Hexane,
- Cyclohexane,
- Other Hexanes,
- Heptanes,
- Methylcyclohexane,
- Benzene,
- Toluene,

- Ethylbenzene,
- Xylenes, and
- C8+ Heavies

The natural gas stream composition data, both for dry stream and wet stream, were then transcribed into Microsoft Excel spreadsheets. This spreadsheet file consisted of composition data for 314 natural gas streams (wet and dry) in 64 counties. Once the data transcription was complete, these data were quality assured for accuracy and completeness. During the Quality Assurance (QA) steps, ERG staff identified a few data points that seemed indicative of a CO₂ well instead of a natural gas well. The CO₂ concentration for these streams was above 85% (by volume). These data points were present in Kent, Pecos, and Terrell counties. These data were excluded from further analysis. Also, the excluded data for Kent and Terrell counties were the only data points available for these two counties. Table 5-1, below, lists the number of GLYCalc reports used in the analysis by natural gas stream type and County.

County	Dry Gas Stream	Wet Gas Stream	County	Dry Gas Stream	Wet Gas Stream
Anderson	2	2	Jack	1	1
Atascosa	1	1	Jefferson	1	1
Bastrop	1	1	Johnson	17	17
Brazoria	11	11	Kenedy	1	1
Brooks	3	3	Kent ^a	1	1
Caldwell	1	1	Liberty	7	7
Callahan	1	1	Martin	1	1
Camp	1	1	Matagorda	2	2
Carson	1	1	Montague	1	1
Cass	1	1	Nacogdoches	2	2
Chambers	1	1	Nueces	1	1
Clay	2	2	Orange	2	2
Coke	1	1	Palo Pinto	1	1
Crockett	4	4	Panola	2	2
De Witt	1	1	Parker	5	5
Denton	2	2	Pecos ^a	4	4
Eastland	2	2	Refugio	2	2
Erath	1	1	Robertson	1	1
Fort Bend	1	1	Rusk	2	2
Freestone	5	5	San Patricio	2	2
Gaines	1	1	Smith	3	3
Galveston	3	3	Sterling	2	2
Gray	1	1	Tarrant	12	12
Gregg	4	4	Terrell ^a	1	1
Hansford	1	1	Upshur	1	2
Hardin	2	2	Upton	1	0
Harris	6	6	Ward	1	1

Table 5-1. Counties Included in the Natural Gas	Composition Analysis
---	-----------------------------

County	Dry Gas Stream	Wet Gas Stream County Dry G		Dry Gas Stream	Wet Gas Stream
Harrison	3	3	Webb	1	1
Hemphill	1	1	Wheeler	1	1
Henderson	2	2	Wilbarger	1	1
Hood	1	1	Winkler	1	1
Houston	1	1	Wise	5	5
Irion	1	1	Young	1	1
			Total	157	157

 Table 5-1. Counties Included in the Natural Gas Composition Analysis

^a As described above, the data for Kent and Terrell counties was not used and only 3 of the 4 records for Pecos county were used.

After all the QA checks were completed, average county profiles were developed for the counties for which natural gas composition data were available (listed in Table 5-1 above). Both wet and dry natural gas composition averages were calculated. The 64 counties for which data were available were then grouped by basins (Anadarko, Bend Arch-Forth Worth, East Texas, Permian, and Western Gulf Basins). Basin-level average natural gas composition (wet and dry) profiles were calculated for all the basins where data was available at county level. No data were available for counties in Marathon Thrust Belt Basin and Palo Duro Basin. Table 5-2 lists the counties in Marathon Thrust Belt Basin and Palo Duro Basin.

Table 5-2. List of Counties Located in Marathon Thrust Belt Basin and PaloDuro Basin

Basin	Counties	
Marathon Thrust Belt	Brewster	Terrell
	Armstrong	Hale
	Bailey	Hall
	Briscoe	Hartley
	Castro	Lamb
	Childress	Motley
Palo Duro Basin	Collingsworth	Oldham
	Cottle	Parmer
	Dallam	Potter
	Deaf Smith	Randall
	Donley	Swisher
	Floyd	

Basin-level average natural gas composition profile and state-level average profile were then allocated to counties with no data based on which basin the county was located in. Except for the counties listed in Table 5-2, basin-level average profiles were allocated to all counties with no GLYCalc reports available. For the counties in Marathon Thrust Belt and Palo Duro basin, state-level average profile was allocated. Table 5-3 below

Composition in %	Anadarko	Basin	Bend Arch Worth Bas		East Texas	Basin	Permian B	asin	Western G	Gulf	State Prof	ile
Volume	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet
	Stream	Stream	Stream	Stream	Stream	Stream	Stream	Stream	Stream	Stream	Stream	Stream
Water	0.04	0.13	0.01	0.12	0.01	0.12	0.01	0.15	0.01	0.12	0.01	0.12
Carbon Dioxide	0.64	0.65	1.74	1.74	1.72	1.71	0.95	0.90	1.13	1.14	1.43	1.44
Hydrogen Sulfide	0.03	0.03	0.001	0.001	0.0004	0.0004	0.11	0.11	0.0003	0.25	0.03	0.09
Nitrogen	1.35	1.34	1.74	1.73	0.88	0.87	2.14	2.18	0.51	0.49	1.20	1.19
Methane	90.76	90.68	87.91	87.59	91.73	91.49	80.43	78.53	90.07	89.94	88.67	88.36
Ethane	3.99	3.98	5.23	5.21	3.57	3.64	9.02	9.07	4.51	4.51	5.03	5.00
Propane	1.74	1.74	2.14	2.18	1.04	1.06	4.48	5.39	2.04	2.05	2.13	2.21
Isobutane	0.26	0.26	0.31	0.32	0.28	0.29	0.51	0.61	0.48	0.48	0.38	0.40
n-Butane	0.54	0.54	0.62	0.68	0.31	0.32	1.19	1.63	0.51	0.51	0.58	0.64
Isopentane	0.16	0.16	0.20	0.22	0.15	0.17	0.35	0.40	0.24	0.24	0.22	0.23
n-Pentane	0.17	0.17	0.27	0.29	0.11	0.12	0.32	0.44	0.17	0.17	0.20	0.22
Cyclopentane	0.01	0.01	0.03	0.04	0.04	0.04	0.01	0.02	0.03	0.02	0.02	0.03
n-Hexane	0.10	0.06	0.05	0.12	0.05	0.05	0.16	0.18	0.05	0.06	0.06	0.09
Cyclohexane	0.01	0.01	0.04	0.03	0.03	0.03	0.09	0.11	0.05	0.06	0.04	0.05
Other Hexanes	0.14	0.14	0.07	0.06	0.10	0.11	0.24	0.29	0.17	0.15	0.13	0.13
Heptanes	0.06	0.06	0.08	0.08	0.06	0.07	0.14	0.14	0.07	0.09	0.08	0.08
Methylcyclohexane	0.02	0.02	0.02	0.02	0.01	0.02	0.04	0.04	0.04	0.04	0.03	0.04
Benzene	0.01	0.01	0.01	0.01	0.02	0.03	0.07	0.08	0.01	0.02	0.02	0.02
Toluene	0.01	0.01	0.003	0.003	0.01	0.01	0.04	0.04	0.01	0.02	0.01	0.01
Ethylbenzene	0.001	0.001	0.0005	0.001	0.001	0.001	0.01	0.01	0.001	0.002	0.001	0.002
Xylenes	0.003	0.01	0.002	0.003	0.002	0.005	0.01	0.01	0.003	0.01	0.003	0.005
C8+ Heavies	0.04	0.04	0.03	0.03	0.03	0.04	0.07	0.07	0.11	0.11	0.06	0.06

Table 5-3. Basin-Level and State-Level Average Natural Gas Stream Composition Profiles

presents the basin-level and state-level average natural gas stream composition profiles for both wet and dry natural gas streams.

Based on the basin and state level average natural gas composition profiles, the methane composition varies from 78% to 91%. However, individual GLYCalc reports indicated as high as 97.8% methane. Table 5-4 indicates the average natural gas composition profile allocation scheme that was adopted for counties where GLYCalc reports were not available. Figure 5-1 presents a distribution of methane concentrations across all Texas counties. Detailed county-level natural gas composition profile data are presented in Attachment D.

County	Profile Allocation	Basin	County	Profile Allocation	Basin
Anderson	Average County		Karnes	Average Basin	Western Gulf
Andrews	Average Basin	Permian Basin	Kaufman	Average Basin	East Texas Basin
					Bend Arch-Fort
Angelina	Average Basin	East Texas Basin	Kendall	Average Basin	Worth Basin
Aransas	Average Basin	Western Gulf	Kenedy	Average County	
Archer	Average Basin	Bend Arch-Fort Worth Basin	Kent ¹	Average Basin	Permian Basin
Armstrong	Average State	Palo Duro Basin	Kerr	Average Basin	Bend Arch-Fort Worth Basin
Atascosa	Average County		Kimble	Average Basin	Bend Arch-Fort Worth Basin
Austin	Average Basin	Western Gulf	King	Average Basin	Permian Basin
Bailey	Average State	Palo Duro Basin	Kinney	Average Basin	Western Gulf
Bandera	Average Basin	Bend Arch-Fort Worth Basin	Kleberg	Average Basin	Western Gulf
Bastrop	Average County		Knox	Average Basin	Bend Arch-Fort Worth Basin
Baylor	Average Basin	Bend Arch-Fort Worth Basin	La Salle	Average Basin	Western Gulf
Bee	Average Basin	Western Gulf	Lamar	Average Basin	East Texas Basin
Bell	Average Basin	Western Gulf	Lamb	Average State	Palo Duro Basin
Bexar	Average Basin	Western Gulf	Lampasas	Average Basin	Bend Arch-Fort Worth Basin
Blanco	Average Basin	Bend Arch-Fort Worth Basin	Lavaca	Average Basin	Western Gulf
Borden	Average Basin	Permian Basin	Lee	Average Basin	Western Gulf
Bosque	Average Basin	Bend Arch-Fort Worth Basin	Leon	Average Basin	East Texas Basin
Bowie	Average Basin	East Texas Basin	Liberty	Average County	
Brazoria	Average County		Limestone	Average Basin	East Texas Basin
Brazos	Average Basin	Western Gulf	Lipscomb	Average Basin	Anadarko Basin
Brewster	Average State	Marathon Thrust Belt	Live Oak	Average Basin	Western Gulf
Briscoe	Average State	Palo Duro Basin	Llano	Average Basin	Bend Arch-Fort Worth Basin
Brooks	Average County		Loving	Average Basin	Permian Basin
Brown	Average Basin	Bend Arch-Fort Worth Basin	Lubbock	Average Basin	Permian Basin
Burleson	Average Basin	Western Gulf	Lynn	Average Basin	Permian Basin
Burnet	Average Basin	Bend Arch-Fort Worth Basin	Madison	Average Basin	Western Gulf

County	Profile Allocation	Basin	County	Profile Allocation	Basin
Caldwell	Average County		Marion	Average Basin	East Texas Basin
Calhoun	Average Basin	Western Gulf	Martin	Average County	
					Bend Arch-Fort
Callahan	Average County		Mason	Average Basin	Worth Basin
Cameron	Average Basin	Western Gulf	Matagorda	Average County	
Camp	Average County		Maverick	Average Basin	Western Gulf
Carson	Average County		McCulloch	Average Basin	Bend Arch-Fort Worth Basin
				5	Bend Arch-Fort
Cass	Average County		McLennan	Average Basin	Worth Basin
Castro	Average State	Palo Duro Basin	McMullen	Average Basin	Western Gulf
Chambers	Average County		Medina	Average Basin	Western Gulf
					Bend Arch-Fort
Cherokee	Average Basin	East Texas Basin	Menard	Average Basin	Worth Basin
Childress	Average State	Palo Duro Basin	Midland	Average Basin	Permian Basin
Clay	Average County		Milam	Average Basin	Western Gulf
					Bend Arch-Fort
Cochran	Average Basin	Permian Basin	Mills	Average Basin	Worth Basin
Coke	Average County		Mitchell	Average Basin	Permian Basin
Coleman	Average Basin	Bend Arch-Fort Worth Basin	Montague	Average County	
Collin	Average Basin	Bend Arch-Fort Worth Basin	Montgomery	Average Basin	Western Gulf
Collingsworth	Average State	Palo Duro Basin	Moore	Average Basin	Anadarko Basin
Colorado	Average Basin	Western Gulf	Morris	Average Basin	East Texas Basin
Comal	Average Basin	Western Gulf	Motley	Average State	Palo Duro Basin
Comanche	Average Basin	Bend Arch-Fort Worth Basin	Nacogdoches	Average County	
Concho	Average Basin	Bend Arch-Fort Worth Basin	Navarro	Average Basin	East Texas Basin
Cooke	Average Basin	Bend Arch-Fort Worth Basin	Newton	Average Basin	Western Gulf
Coryell	Average Basin	Bend Arch-Fort Worth Basin	Nolan	Average Basin	Permian Basin
Cottle	Average State	Palo Duro Basin	Nueces	Average County	
Crane	Average Basin	Permian Basin	Ochiltree	Average Basin	Anadarko Basin
Crockett	Average County		Oldham	Average State	Palo Duro Basin
Crosby	Average Basin	Permian Basin	Orange	Average County	
Culberson	Average Basin	Permian Basin	Palo Pinto	Average County	

County	Profile Allocation	Basin	County	Profile Allocation	Basin
Dallam	Average State	Palo Duro Basin	Panola	Average County	
Dallas	Average Basin	Bend Arch-Fort Worth Basin	Parker	Average County	
Dawson	Average Basin	Permian Basin	Parmer	Average State	Palo Duro Basin
De Witt	Average County		Pecos ¹	Average County	
Deaf Smith	Average State	Palo Duro Basin	Polk	Average Basin	Western Gulf
Delta	Average Basin	East Texas Basin	Potter	Average State	Palo Duro Basin
Denton	Average County		Presidio	Average Basin	Permian Basin
Dickens	Average Basin	Permian Basin	Rains	Average Basin	East Texas Basin
Dimmit	Average Basin	Western Gulf	Randall	Average State	Palo Duro Basin
Donley	Average State	Palo Duro Basin	Reagan	Average Basin	Permian Basin
					Bend Arch-Fort
Duval	Average Basin	Western Gulf	Real	Average Basin	Worth Basin
Eastland	Average County		Red River	Average Basin	East Texas Basin
Ector	Average Basin	Permian Basin	Reeves	Average Basin	Permian Basin
Edwards	Average Basin	Permian Basin	Refugio	Average County	
El Paso	Average Basin	Permian Basin	Roberts	Average Basin	Anadarko Basin
Ellis	Average Basin	Bend Arch-Fort Worth Basin	Robertson	Average County	
Erath	Average County		Rockwall	Average Basin	East Texas Basin
					Bend Arch-Fort
Falls	Average Basin	East Texas Basin	Runnels	Average Basin	Worth Basin
Fannin	Average Basin	East Texas Basin	Rusk	Average County	
Fayette	Average Basin	Western Gulf	Sabine	Average Basin	East Texas Basin
Fisher	Average Basin	Permian Basin	San Augustine	Average Basin	East Texas Basin
Floyd	Average State	Palo Duro Basin	San Jacinto	Average Basin	Western Gulf
Foard	Average Basin	Bend Arch-Fort Worth Basin	San Patricio	Average County	
					Bend Arch-Fort
Fort Bend	Average County		San Saba	Average Basin	Worth Basin
Franklin	Average Basin	East Texas Basin	Schleicher	Average Basin	Permian Basin
Freestone	Average County		Scurry	Average Basin	Permian Basin
					Bend Arch-Fort
Frio	Average Basin	Western Gulf	Shackelford	Average Basin	Worth Basin
Gaines	Average County		Shelby	Average Basin	East Texas Basin
Galveston	Average County		Sherman	Average Basin	Anadarko Basin

County	Profile Allocation	Basin	County	Profile Allocation	Basin
Garza	Average Basin	Permian Basin	Smith	Average County	
					Bend Arch-Fort
Gillespie	Average Basin	Bend Arch-Fort Worth Basin	Somervell	Average Basin	Worth Basin
Glasscock	Average Basin	Permian Basin	Starr	Average Basin	Western Gulf
					Bend Arch-Fort
Goliad	Average Basin	Western Gulf	Stephens	Average Basin	Worth Basin
Gonzales	Average Basin	Western Gulf	Sterling	Average County	
Gray	Average County		Stonewall	Average Basin	Permian Basin
Grayson	Average Basin	Bend Arch-Fort Worth Basin	Sutton	Average Basin	Permian Basin
Gregg	Average County		Swisher	Average State	Palo Duro Basin
Grimes	Average Basin	Western Gulf	Tarrant	Average County	
					Bend Arch-Fort
Guadalupe	Average Basin	Western Gulf	Taylor	Average Basin	Worth Basin
Hale	Average State	Palo Duro Basin	Terrell ¹	Average State	Marathon Thrust Belt
Hall	Average State	Palo Duro Basin	Terry	Average Basin	Permian Basin
					Bend Arch-Fort
Hamilton	Average Basin	Bend Arch-Fort Worth Basin	Throckmorton	Average Basin	Worth Basin
Hansford	Average County		Titus	Average Basin	East Texas Basin
Hardeman	Average Basin	Bend Arch-Fort Worth Basin	Tom Green	Average Basin	Permian Basin
Hardin	Average County		Travis	Average Basin	Western Gulf
Harris	Average County		Trinity	Average Basin	Western Gulf
Harrison	Average County		Tyler	Average Basin	Western Gulf
Hartley	Average State	Palo Duro Basin	Upshur	Average County	
Haskell	Average Basin	Bend Arch-Fort Worth Basin	Upton ²	Average County/Average Basin	Permian Basin
Hays	Average Basin	Western Gulf	Uvalde	Average Basin	Western Gulf
Hemphill	Average County		Val Verde	Average Basin	Permian Basin
Henderson	Average County		Van Zandt	Average Basin	East Texas Basin
Hidalgo	Average Basin	Western Gulf	Victoria	Average Basin	Western Gulf
Hill	Average Basin	Bend Arch-Fort Worth Basin	Walker	Average Basin	Western Gulf
Hockley	Average Basin	Permian Basin	Waller	Average Basin	Western Gulf
Hood	Average County		Ward	Average County	
Hopkins	Average Basin	East Texas Basin	Washington	Average Basin	Western Gulf
Houston	Average County		Webb	Average County	

County	Profile Allocation	Basin	County	Profile Allocation	Basin
Howard	Average Basin	Permian Basin	Wharton	Average Basin	Western Gulf
Hudspeth	Average Basin	Permian Basin	Wheeler	Average County	
					Bend Arch-Fort
Hunt	Average Basin	East Texas Basin	Wichita	Average Basin	Worth Basin
Hutchinson	Average Basin	Anadarko Basin	Wilbarger	Average County	
Irion	Average County		Willacy	Average Basin	Western Gulf
Jack	Average County		Williamson	Average Basin	Western Gulf
Jackson	Average Basin	Western Gulf	Wilson	Average Basin	Western Gulf
Jasper	Average Basin	Western Gulf	Winkler	Average County	
Jeff Davis	Average Basin	Permian Basin	Wise	Average County	
Jefferson	Average County		Wood	Average Basin	East Texas Basin
Jim Hogg	Average Basin	Western Gulf	Yoakum	Average Basin	Permian Basin
Jim Wells	Average Basin	Western Gulf	Young	Average County	
Johnson	Average County		Zapata	Average Basin	Western Gulf
Jones	Average Basin	Bend Arch-Fort Worth Basin	Zavala	Average Basin	Western Gulf

¹These counties had GLYCalc reports that were flagged as potential CO₂ wells and excluded from further analysis. ²Upton county had 1 GLYCalc report and that report did not include wet gas stream composition data.

Figure 5-1. Natural Gas Methane Composition Distribution across Texas Counties

Attachment A Survey Letter Dear [Owner/Operator Contact Name]:

Eastern Research Group (ERG), an independent research organization, is conducting a study on condensate storage tank emissions for the Texas Commission on Environmental Quality (TCEQ). The purpose of this study is to develop updated county- and region-specific emission factors for estimating condensate storage tank emissions for each of the regions in Texas. The study results will assist the TCEQ in refining the emission factors used to develop the Texas area source oil and gas air emissions inventory.

Condensate tank flashing, working, and breathing emissions of volatile organic compounds (VOC) are currently estimated using an emission factor from a 2006 Texas Environmental Research Consortium study entitled: "VOC Emissions from Oil and Condensate Storage Tanks". TCEQ uses this emission factor to develop county-level area source VOC emissions estimates from condensate tanks at upstream oil and gas operations. To further increase the accuracy of the area source inventory, the TCEQ is seeking information from operators to assist in development of a refined county-specific condensate tank emission factor.

We are asking for your <u>voluntary participation</u> in this study of emissions from condensate tanks at gas wells in Texas that were in production during 2011. The study will involve sharing information regarding condensate production and measured or estimated emissions from condensate tank(s). <u>Individual wells and tanks do not need to be identified</u>. The information your company provides will be used for statistical purposes only in order to develop county-level and basin-level estimates and will not be republished or disseminated for other purposes.

ERG will contact your company via phone to discuss this effort and collect any information you are willing to share. We are seeking basin-specific condensate tank emissions information for gas wells in the [Insert Basin_Specific_Text]. The specific information we are requesting for each condensate tank battery includes:

- County
- 2011 VOC emissions
- 2011 condensate production
- Emissions estimation method
- Control technology
- Control efficiency
- API gravity
- Separator pressure

A table on the reverse side of this letter shows the type of data we wish to collect.

We appreciate your assistance in this important study. Questions concerning the scope of this study or ERG's relationship with TCEQ may be directed to the TCEQ Project Manager, Miles Whitten, at (512) 239-5479, or via email at miles.whitten@tceq.texas.gov. If you have any questions on the technical aspects of the study, please feel free to contact me at (919) 468-7902, or via email at stephen.treimel@erg.com.

Sincerely,

Stephen Treimel Environmental Scientist Eastern Research Group, Inc. Attachment B Survey Materials – Word Table and Excel Spreadsheet Operator Name: [Insert Operator_Name]

Basin : [Insert Basin_Name_and_Counties]

County	Condensate API Gravity (degrees)	Separator Pressure (psig)	2011 Condensate Production (bbl)	2011 VOC Emissions (tons)	Emissions Estimation Method (Testing, E&P Tank, Process Simulation model, GOR, HARC 051C, etc.)	Are Emissions vented, controlled, or recovered?	If controlled or recovered, what technology is used?	If controlled or recovered, what is the control or recovery efficiency?

Texas Commission on Environmental Quality - Condensate Tank Emissions Survey

Instructions: Provide the data listed below for up to ten separate condensate tank batteries located in the counties listed below. To avoid biasing the survey results, we ask that you please select the tanks at random from all of your producing wells in this region.

Operator Name:

Basin (Counties) : Anadarko basin (Hemphill, Lipscomb, Ochiltree, Roberts, and Wheeler counties).

			2011	2011 VOC Emissions (tons)	Emissions Estimation Method (Testing, E&P Tank, Process	Are Emissions vented,	If controlled or recovered,	If controlled or recovered, what is the
	Condensate	Separator	Condensate	(flashing,	Simulation model,	controlled,	what	control or
	API Gravity	Pressure	Production	working, &	GOR, HARC 051C,	or	technology is	recovery
County	(degrees)	(psig)	(bbl)	breathing)	TANKS 4.0, etc)	recovered?	used?	efficiency?

Completed surveys can be emailed to me at stephen.treimel@erg.com or printed and mailed to: Eastern Research Group, 1600 Perimeter Park Drive, Morrisville, NC 27560.

Attachment C Condensate Tank Emissions Data (Condensate_Tank_Data.xlsx) Attachment D County-Level Average Natural Gas Composition Profiles (NG_Composition_Profiles.xlsx)

Exhibit 4

Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2016: Revisions to CO₂ Emissions Estimation Methodologies

This memo describes revisions implemented for multiple segments of natural gas and petroleum systems in the 2018 Inventory of U.S. Greenhouse Gas Emissions and Sinks (GHGI). The revisions focus on CO_2 emissions calculation methodologies, but for certain sources, both the CH_4 and CO_2 calculation methodologies were revised. Previous versions of this memo were released in June and October 2017.^{1,2}

The EPA made CO₂ methodological revisions for sources and segments that already rely on a subpart W-based CH₄ emission calculation methodology or where the CH₄ calculation methodology was otherwise recently revised. The subpart W methodology revisions for CH₄ emissions estimates are documented in the following memos: the 2014 HF Completion and Workover memo,³ 2015 HF Completion and Workover memo,⁴ 2016 Transmission memo,⁵ 2016 Production memo,⁶ 2017 Production memo,⁷ and 2017 Processing memo.⁸ The revisions discussed in this memo create consistency between CH₄ and CO₂ calculation methodologies. In addition, the EPA updated the GHGI to include both the CO₂ emissions and the relatively minor CH₄ emissions from flare stacks reported under subpart W in the production and transmission and storage segments.

The sources discussed in this memo include: production segment storage tanks, associated gas venting and flaring, hydraulically fractured (HF) gas well completions and workovers, production segment pneumatic controllers, production segment pneumatic pumps, liquids unloading, production segment miscellaneous flaring, most sources in the gas processing segment, transmission station flares, underground natural gas storage flares, and transmission and storage pneumatic controllers. The EPA did not consider revisions to the distribution segment CO₂ emissions calculation methodology, as discussed in Section 1.2.

1. Background and GHGI Methodology for CO₂ Emissions

This section discusses the GHGI methodology for calculating CO_2 emissions. Section 1.1 describes a CO_2 -to-CH₄ gas content ratio methodology, which is the default approach used in all GHGI segments. This methodology was applied for numerous sources for the 2017 GHGI, and is still used in the 2018 GHGI for certain sources (excluding those sources with revisions in section 3). Section 1.2 describes the previous GHGI methodology to calculate CO_2

06/documents/updates_under_consideration_for_2018_ghgi_emissions_for_co2_from_natural_gas_and_petroleum_systems.pdf. ² See https://www.epa.gov/sites/production/files/2017-10/documents/2018_ghgi_co2_revisions_under_consideration_2017-10-25_to_post.pdf.

¹ See https://www.epa.gov/sites/production/files/2017-

³ "Overview of Update to Methodology for Hydraulically Fractured Gas Well Completions and Workovers in the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2012 (2014 Inventory)," available at https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems-ghg-inventory-updates-1990-2012-inventory-published.

⁴ "Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2013: Revision to Hydraulically Fractured Gas Well Completions and Workovers Estimate," available at https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems-ghg-inventory-updates-1990-2013-inventory-published.

 ⁵ "Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2014: Revisions to Natural Gas Transmission and Storage Emissions," available at https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems-ghg-inventory-additional-information-1990-2014-ghg.
 ⁶ "Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2014: Revisions to Natural Gas and Petroleum Production Emissions,"

available at https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems-ghg-inventory-additional-information-1990-2014-ghg. ⁷ "Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2015: Revisions to Natural Gas and Petroleum Systems Production

Emissions," available at https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems-ghg-inventory-additional-information-1990-2015-ghg.

⁸ "Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2015: Revisions to Natural Gas Systems Processing Segment Emissions," available at https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems-ghg-inventory-additional-information-1990-2015-ghg.

emissions for certain sources that relied on emission source-specific methods. The previous GHGI CO_2 EFs are documented in Appendix A.

1.1 CO₂-to-CH₄ Gas Content Ratio Methodology

The default GHGI methodology to calculate CO_2 emission factors (EFs) relies on CH_4 emission factors and an assumed ratio of CO_2 -to- CH_4 gas content. The CO_2 EF calculation is shown in equation 1:

$$CO_2 EF = CH_4 EF * \left(\frac{CO_2 \text{ content}}{CH_4 \text{ content}}\right)$$
 Equation 1

The default CH₄ and CO₂ content values for sources in natural gas systems are from the 1996 GRI/EPA study,⁹ EIA,¹⁰ and GTI's Gas Resource Database¹¹ and summarized in Table 1 below.

Segment	CH₄ Content (vol%)	CO₂ Content (vol%)
Production – North East region	78.8	3.04
Production – Mid Central region		0.79
Production – Gulf Coast region		2.17
Production – South West region		3.81
Production – Rocky Mountain region		7.58
Production – West Coast region		0.16
Processing – Before CO ₂ removal	87.0	3.45
Processing – After CO ₂ removal		1.0
Transmission and Underground NG Storage	93.4	1.0
LNG Storage and LNG Import/Export	93.4	1.16
Distribution	93.4	1.0

Table 1. Default Gas Content Values for Natural Gas Systems in the GHGI

For most of the petroleum production sources evaluated in this memo, the GHGI uses a ratio of CO_2 to CH_4 content, set at 0.017 based on the average flash gas CO_2 and CH_4 content from API TankCalc runs.

The ratio of CO₂-to-CH₄ gas content methodology is used to calculate venting and fugitive CO₂ EFs, because the CH₄ EFs that are referenced for this methodology represent venting and fugitive emissions, which are predominantly CH₄ with minimal CO₂ emissions. EPA does not use this methodology in the GHGI to calculate CO₂ EFs for combustion sources such as flares, for which the inverse is true (CO₂ is predominant, with minimal CH₄ emissions).

1.2 Emission Source-Specific CO₂ Calculation Methodologies

The previous GHGI used the following emission source-specific methodologies to calculate CO₂ emissions from oil and condensate tanks at production sites, AGR units at natural gas processing plants, and production and processing flaring.

1.2.1 Oil and Condensate Tanks at Production Sites

The previous GHGI methodology to calculate CO₂ emissions for oil and condensate tanks used CO₂ specific EFs. The EFs were developed using API TankCalc software with varying API gravities. The oil tank EF is the average from

 ⁹ Methane Emissions from the Natural Gas Industry, Volume 6: Vented and Combustion Source Summary, Appendix A.
 ¹⁰ U.S. Energy Information Administration. Emissions of Greenhouse Gases in the United States: 1987-1992, Appendix A.
 1994.

¹¹ GRI-01/0136 GTI's Gas Resource Database: Unconventional Natural Gas and Gas Composition Databases. Second Edition. August, 2001.
API TankCalc runs for oils with API gravity less than 45, and the condensate tank EF considered data with API gravity greater than 45. Condensate tank EFs were determined for both controlled and uncontrolled tanks; the controlled tank EF assumed a control efficiency of 80%. The previous GHGI calculated oil tank CO₂ emissions by applying the oil tank emission factor (EF) to 20% of stripper well production and 100% of non-stripper oil well production. For gas production, the previous GHGI methodology estimated tank emissions by applying the condensate tank EF to condensate production in each NEMS region.

1.2.2 AGR Units at Natural Gas Processing Plants

The previous GHGI CO₂ EF for AGR units at natural gas processing plants relied on gas CO₂ content only. The difference in the default CO₂ content before and after CO₂ removal (3.45% - 1.0% = 2.45% of processing plant gas throughput) is assumed to be emitted.

1.2.3 Flaring

Flaring emissions from the production and processing segments were previously calculated under a single line item in the production segment of natural gas systems. Therefore, flaring emissions were not specifically attributed to the natural gas systems processing segment or the petroleum systems production segment. The EF was based on data from EIA's 1996 greenhouse gas emissions inventory, which estimated the amount of CO₂ released per BTU of natural gas combusted (0.055 g/BTU). The activity data were annual EIA "Vented and Flared" gas volumes (MMcf), which are reported under Natural Gas Gross Withdrawals and Production,¹² combined with the estimated national average gas heating value (averaging approximately 1,100 BTU/cf over the time series¹³). The EIA Vented and Flared data represents a balancing factor amount that EIA calculates to reconcile reported upstream and downstream gas volumes, and assumes is potentially emitted to the atmosphere during production or processing operations; the previous GHGI methodology assumed it was all flared. Details on how much of the Vented and Flared gas is potentially emitted during natural gas production, petroleum production, and processing are not available, so the previous GHGI assigned it all to natural gas production. Also, the EIA data do not account for gas that is flared prior to metering.

Flaring emissions from the transmission and storage segment were not previously calculated in the GHGI. Flaring emissions from the distribution segment are not currently calculated in the GHGI. Data are unavailable on flaring emissions in the distribution segment, but they are likely to be insignificant based on the low prevalence of this activity in the industry segment. EPA did not consider revisions to the distribution segment CO₂ emissions calculation methodology for the 2018 GHGI.

2. Available Subpart W Data

Subpart W of the EPA's Greenhouse Gas Reporting Program (GHGRP) collects annual operating and emissions data on numerous sources from onshore natural gas and petroleum systems that meet a reporting threshold of 25,000 metric tons of CO₂ equivalent (mt CO₂e) emissions. Onshore production facilities in subpart W are defined as a unique combination of operator and basin of operation, a natural gas processing facility in subpart W is each unique processing plant, a natural gas transmission compression facility in subpart W is each unique transmission compressor station, an underground natural gas storage facility in subpart W is the collection of subsurface storage and processes and above ground wellheads, an LNG storage facility in subpart W is the collection of storage vessels and related equipment, and an LNG import and export facility in subpart W is the collection of equipment that handles LNG received from or transported via ocean transportation. Facilities in the abovementioned industry segments that meet the subpart W reporting threshold have been reporting since 2011;

¹² EIA Natural Gas Gross Withdrawals and Production, including the Vented and Flared category, is available at https://www.eia.gov/dnav/ng/ng_prod_sum_a_EPG0_VGV_mmcf_m.htm

¹³ EIA Monthly Energy Review. Table A4 - Approximate Heat Content of Natural Gas (Btu per Cubic Feet).

currently, six years of subpart W reporting data are publicly available, covering reporting year (RY) 2011 through RY2016.¹⁴

Subpart W activity and emissions data have been used in recent GHGIs to calculate CH₄ emissions for several production, processing, and transmission and storage sources. CO₂ emissions data from subpart W had not yet been incorporated into the 2017 GHGI. However, facilities use an identical reporting structure for CO₂ and CH₄. Therefore, where subpart W CH₄ data have been used, the CO₂ data may be incorporated in a parallel manner. The 2014 HF Completion and Workover memo, 2016 Transmission memo, 2016 Production memo, 2017 Production memo, and 2017 Processing memo discuss in greater detail the subpart W data available for those sources.

EPA also reviewed subpart W data that could be used for CO₂ emission estimates from miscellaneous production flaring, acid gas removal (AGR) vents, and transmission and storage station flares—sources for which the emissions were not previously calculated with subpart W data in the GHGI.

Production segment flare emissions are only reported under the "flare stacks" emission source in subpart W if the flare emissions originate from sources not otherwise covered by subpart W—this emission source is referred to as "miscellaneous production flaring" for purposes of this memo. Therefore, the subpart W production flares data do not duplicate flaring emissions reported, for example, under production tank flaring or associated gas flaring. It also ensures all production flaring emissions are reported for facilities that meet the reporting threshold. Flare emissions are calculated using a continuous flow measurement device or engineering calculations, the gas composition, and the flare combustion efficiency. A default flare combustion efficiency of 98% may be applied, if manufacturer data are not available.

Under subpart W, gas processing facilities calculate AGR unit CO₂ emissions using one of four methods: (1) CO₂ CEMS; (2) a vent stream flow meter with CO₂ composition data; (3) calculation using an equation with the inlet or outlet natural gas flow rate and measured inlet and outlet CO₂ composition data; or (4) simulation software (e.g., AspenTech HYSYS or API 4679 AMINECalc). CH₄ emissions for AGR units are not reported in subpart W.

Transmission and underground natural gas storage stations report emissions from all flaring under the "flare stacks" emission source as of RY2015. Prior to that, flare emissions reported under subpart W were included in the reported emissions for the specific source (e.g., reciprocating or centrifugal compressor). Flare emissions are calculated in subpart W using a continuous flow measurement device or engineering calculations, the gas composition, and the flare combustion efficiency. A default flare combustion efficiency of 98% may be applied, if manufacturer data are not available.

3. 2018 GHGI Revisions

For the 2018 GHGI, EPA calculated CO_2 EFs using the same methodologies that were developed for CH_4 EFs in recent GHGIs. For associated gas venting and flaring and production segment miscellaneous flaring, while there was an existing methodology, EPA calculated both CO_2 and CH_4 emissions using a revised methodology for the 2018 GHGI. In addition, the EPA updated the GHGI to incorporate subpart W data for CO_2 from AGR units, and both the CO_2 emissions and the relatively minor CH_4 emissions from flare stacks in the production and transmission and storage segments.

¹⁴ The GHGRP subpart W data used in the analyses discussed in this memo are those reported to the EPA as of August 5, 2017.

3.1 **Production CO**₂ Emission Factors

The EPA developed CO₂ EFs for several sources in the natural gas and petroleum production segments. The CH₄ EFs for oil and condensate tanks, pneumatic controllers, and pneumatic pumps were recently revised using subpart W data, and EPA applied the same methodology to calculate CO₂ EFs. There was an existing subpart W-based CH₄ methodology for associated gas venting and flaring and gas well hydraulically fractured completions and workovers, but a revised methodology was developed for these sources. The EPA also developed a CO₂ emissions calculation methodology for miscellaneous production flaring. Each of these sources are discussed below.

3.1.1 Associated Gas Venting and Flaring

The associated gas venting and flaring emissions calculation methodology was revised in the 2017 GHGI to use subpart W data and calculated CH₄ emissions using a national-level, well count-based scaling approach.¹⁵ However, stakeholders commented that national-level EFs and AFs would not take into account differences in associated gas venting and flaring among geographic regions. In particular, over- or under-representation in GHGRP data by geographic regions where associated gas is vented or flared more or less frequently may disproportionately contribute to national-level factors. Stakeholders also commented that associated gas emissions are more directly related to production levels, rather than well counts. In response to stakeholder comments, the EPA reassessed the associated gas venting and flaring data and finalized a basin-level, production-based scaling approach for the 2018 GHGI. The final methodology is applied for both CO₂ and CH₄ emissions and is discussed here. The October 2017 version of this memo documents the national-level approach for CO₂ (following the 2017 GHGI methodology) and presents a NEMS region-level, well-based approach that was considered but not implemented.

The EPA first reviewed the reported subpart W associated gas venting and flaring emissions for RY2011 through RY2016 to identify basins that contribute the majority of the associated gas emissions. Specifically, if a basin contributed at least 10 percent of total annual emissions (on a CO₂ Eq. basis) from associated gas venting and flaring in any year, then basin-specific EFs and AFs were developed. See Appendix B for the associated gas emissions by year for all basins. Four basins met this criteria: 220 - Gulf Coast Basin (LA, TX); 360 - Anadarko Basin; 395 - Williston Basin; and 430 - Permian Basin. Associated gas venting and flaring data in all other basins were combined, and EFs and AFs developed for the other basins as a single group.

EPA calculated EFs for RY2015 and RY2016; subpart W data in earlier years do not contain publicly available production data. The EPA calculated CO₂ and CH₄ EFs for associated gas venting and flaring by summing the reported emissions for venting and flaring and dividing by the sum of the reported volume of oil produced during associated gas venting and flaring. Table 2 and Table 3 present the emissions and oil production data for years 2015 and 2016, and Table 4 shows the resulting EFs. The 2015 EFs were applied to all prior years in the time series.

Basin	Venting CO ₂ (mt)	Venting CH₄ (mt)	Volume of Oil Produced During Venting (bbl)	Flaring CO ₂ (mt)	Flaring CH₄ (mt)	Volume of Oil Produced During Flaring (bbl)
220 - Gulf Coast Basin (LA, TX)	93	1,259	2,110,981	589,431	2,718	18,591,586
360 - Anadarko Basin	22	906	1,994,628	159,208	695	148,688
395 - Williston Basin	151	1,564	229,586	7,890,206	23,965	264,426,732
430 - Permian Basin	2,675	5,839	5,975,614	2,094,869	8,185	36,912,840
All Other Basins	8,520	6,303	2,522,412	390,300	1,749	27,110,014

Table 2. Associated Gas Venting	and Flaring Emissions a	nd Oil Production	Subpart W RY2015
	5 and maring cimissions a		

¹⁵ See the 2017 Production Memo for details.

Basin	Venting CO ₂ (mt)	Venting CH₄ (mt)	Volume of Oil Produced During Venting (bbl)	Flaring CO₂ (mt)	Flaring CH₄ (mt)	Volume of Oil Produced During Flaring (bbl)
220 - Gulf Coast Basin (LA, TX)	267	2,089	1,250,441	298,967	1,187	13,547,580
360 - Anadarko Basin	6	294	175,531	1,185	5	25,735
395 - Williston Basin	140	1,356	234,720	5,035,977	14,017	208,727,344
430 - Permian Basin	216	4,281	4,135,034	1,691,562	6,767	38,294,649
All Other Basins	4,538	4,353	6,711,810	284,496	1,049	18,628,782

Table 3. Associated Gas Venting and Flaring Emissions and Oil Production, Subpart W RY2016

Basin	Venting CO ₂ EF		Venting CH ₄ EF		Flaring CO ₂ EF		Flaring CH ₄ EF	
	2015	2016	2015	2016	2015	2016	2015	2016
220 - Gulf Coast Basin (LA, TX)	0.04	0.21	0.60	1.67	32	22	0.15	0.09
360 - Anadarko Basin	0.01	0.03	0.45	1.68	1,071	46	4.7	0.20
395 - Williston Basin	0.66	0.60	6.81	5.78	30	24	0.09	0.07
430 - Permian Basin	0.45	0.05	0.98	1.04	57	44	0.22	0.18
All Other Basins	3.38	0.68	2.50	0.65	14	26	0.06	0.08

The EPA calculated two AFs for each basin or group: the percent of oil production with either flaring or venting of associated gas and, within that subset of production, the fraction that vents and the fraction that flares. The AFs were calculated for 2015 and 2016, and the 2015 activity factors applied to all prior years. The AF data are presented in Table 5 and Table 6.

Basin	Volume of Oil Produced During Venting (bbl)	Volume of Oil Produced During Flaring (bbl)	Subpart W Liquids Production (bbl)	Venting of	% Production with Venting	% Production with Flaring
220 - Gulf Coast Basin (LA, TX)	2,110,981	18,591,586	650,435,832ª	3%	10%	90%
360 - Anadarko Basin	1,994,628	148,688	99,146,641	2.2%	93%	7%
395 - Williston Basin	229,586	264,426,732	447,415,171	59%	0.1%	99.9%
430 - Permian Basin	5,975,614	36,912,840	591,656,726	7%	14%	86%
All Other Basins	2,522,412	27,110,014	645,262,423	5%	9%	91%

a. Reported subpart W liquids production exceeded DrillingInfo production for basin, DrillingInfo production used to calculate AF.

Table 6. Associated Gas Venting and Flaring Production Data and AFs, Subpart W R	Y2016
--	-------

Basin	Volume of Oil Produced During Venting (bbl)	Volume of Oil Produced During Flaring (bbl)	Subpart W Liquids Production (bbl)	Venting of	% Production with Venting	% Production with Flaring
220 - Gulf Coast Basin (LA, TX)	1,250,441	13,547,580	516,246,773ª	3%	8%	92%
360 - Anadarko Basin	175,531	25,735	94,789,700	0.2%	87%	13%
395 - Williston Basin	234,720	208,727,344	322,617,029	65%	0.1%	99.9%
430 - Permian Basin	4,135,034	38,294,649	533,358,906	8%	10%	90%
All Other Basins	6,711,810	18,628,782	1,464,067,958ª	2%	26%	74%

a. Subpart W liquids production exceeded DrillingInfo production for basin, DrillingInfo production used to calculate AF.

EPA uses total liquids production data for each basin or group to calculate national emissions. Total liquids production data for each basin were determined from DrillingInfo, while the total national liquids production was

Total

All Other Basins

available from EIA (consistent with current methodologies for other GHGI sources that rely on total national production data). Therefore, the national production for all other basins equals the EIA production minus the DrillingInfo production for each of the four basins. The total liquids production data for 2015 and 2016 are provided in Table 7, and the resulting national emissions are shown in Table 8.

Basin	Year 2015	Year 2016
220 - Gulf Coast Basin (LA, TX)	650,435,832	516,246,773
360 - Anadarko Basin	144,644,537	122,734,407
395 - Williston Basin	456,423,760	396,753,744
430 - Permian Basin	688,208,748	733,002,118
All Other Basins	1,494,207,123	1,464,067,958

Basin	Venting CO ₂ (mt)		Venting CH ₄ (mt)		Flaring (CO₂ (mt)	Flaring CH₄ (mt)	
DdSIII	2015	2016	2015	2016	2015	2016	2015	2016
220 - Gulf Coast	93	267	1 250	2 0 9 0	F90 421	208.067	2 710	1 1
Basin (LA, TX)	93	207	1,259	2,089	589,431	298,967	2,718	1,18
360 - Anadarko Basin	31	8	1,321	381	232,268	1,534	1,014	
395 - Williston Basin	154	173	1,596	1,668	8,049,073	6,193,234	24,447	17,23
430 - Permian Basin	3,112	297	6,792	5,883	2,436,729	2,324,735	9,520	9,30

14,596

25,564

Table 8. Calculated Total Associated Gas Venting and Flaring Emissions

4.353

903,802

14,375 12,211,303

284,496

9,102,967

Miscellaneous Production Flaring 3.1.2

19,728

23,119

4,538

5,282

The EPA used subpart W RY2015 and RY2016 miscellaneous production flaring (reported under "flare stacks") emissions data to revise the GHGI and more fully account for flare emissions in the production segment. Subpart W data for this source were not previously considered. The EPA calculated the CO₂ and CH₄ EFs using a nationallevel, well count-based scaling approach for the 2018 GHGI public review draft; this methodology is documented in the previous July and October 2017 versions of this memo. However, similar to associated gas venting and flaring, stakeholders recommended a basin-level, production-based scaling approach. After evaluating the data, a basin-level, production-based scaling approach was applied for the 2018 GHGI, and is documented here.

The EPA reviewed the reported subpart W miscellaneous production flaring emissions for RY2011 through RY2016 to identify basins that contribute the majority of the associated gas emissions. Specifically, if a basin contributed at least 10 percent of total annual emissions (on a CO₂ Eq. basis) from miscellaneous production flaring in any year, then basin-specific emission factors and activity factors were developed. See Appendix C for the miscellaneous production flaring emissions by year for all basins. Three basins met this criteria: 220 - Gulf Coast Basin (LA, TX); 395 - Williston Basin; and 430 - Permian Basin. Miscellaneous production flaring data in all other basins were combined, and EFs and AFs developed for the other basins as a single group. EFs and AFs were developed using RY2015 and RY2016 data, as prior years do not contain publicly available production data.

Miscellaneous production flaring emissions are not reported separately for gas and oil production. Therefore, to use reported emissions data for separate natural gas and petroleum systems GHGI estimates, the EPA calculated the fraction of wells that were gas and oil wells for each facility, using the well counts reported in the Equipment Leaks section of subpart W.¹⁶ The EPA then apportioned each facility's reported miscellaneous production flaring

1,187

17,238

9,301

1,049

28,782

4,049

41,749

7

¹⁶ Three facilities with miscellaneous production flaring emissions did not report well counts. Therefore, for these three facilities, the EPA determined the fraction of sub-basins applicable to gas production (i.e., sub-basins with high permeability gas, shale gas, coal seam, or other tight reservoir rock formation types) and oil production (i.e., sub-basins with the oil formation type), and applied these fractions in the calculations.

CO₂ and CH₄ emissions by production type, and summed the facility-level CO₂ and CH₄ emissions for each production type to the basin-level to estimate total reported miscellaneous flaring CO₂ and CH₄ emissions from natural gas and oil production, for each basin or group.

Next, EPA used gas and liquids production data to develop EFs for calculating the national total emissions. The EPA calculated EFs by dividing the basin-level CO₂ and CH₄ emissions for natural gas and oil production by the summation of the reported gas produced from wells (for natural gas production EFs) and liquids produced (for oil production EFs). These emissions data, production data, and calculated EFs are provided in Table 9 through Table 12 below. The 2015 EFs were applied to all prior years in the time series.

Table 9. GHGRP Subpart W RY2015 Natural Gas Production CO ₂ and CH ₄ Emissions and Activity
Data and Calculated EFs for Miscellaneous Production Flaring

Basin	Gas CO₂ (mt)	Gas CH₄ (mt)	Gas Produced from Wells (mscf)	Gas CO₂ EF (kg/mscf/yr)	Gas CH₄ EF (kg/mscf/yr)
220 - Gulf Coast Basin (LA, TX)	324,079	1,157	3,161,594,496	1.03E-01	3.66E-04
395 - Williston Basin	56	0	645,705,949ª	8.61E-05	3.14E-07
430 - Permian Basin	673,592	2,992	2,367,810,821ª	2.84E-01	1.26E-03
All Other Basins	310,453	1,337	20,352,492,312ª	1.53E-02	6.57E-05

a. Subpart W production exceeded DrillingInfo production for basin, DrillingInfo production used.

Table 10. GHGRP Subpart W RY2015 Oil Production CO ₂ and CH ₄ Emissions and Activity Data and
Calculated EFs for Miscellaneous Production Flaring

Basin	Oil CO ₂ (mt)	Oil CH₄ (mt)	Liquids Produced (bbl)	Oil CO₂ EF (kg/bbl/yr)	Oil CH₄ EF (kg/bbl/yr)
220 - Gulf Coast Basin (LA, TX)	859,858	3,548	652,726,411ª	1.32E+00	5.44E-03
395 - Williston Basin	856,957	2,145	447,415,171	1.92E+00	4.79E-03
430 - Permian Basin	424,156	1,626	591,656,726	7.17E-01	2.75E-03
All Other Basins	540,935	1,861	743,813,115ª	7.27E-01	2.50E-03

a. Subpart W production exceeded DrillingInfo production for basin, DrillingInfo production used.

Table 11. GHGRP Subpart W RY2016 Natural Gas Production CO2 and CH4 Emissions and ActivityData and Calculated EFs for Miscellaneous Production Flaring

Basin	Gas CO₂ (mt)	Gas CH₄ (mt)	Gas Produced from Wells (mscf)	Gas CO₂ EF (kg/mscf/yr)	Gas CH4 EF (kg/mscf/yr)
220 - Gulf Coast Basin (LA, TX)	213,698	584	2,661,846,306	8.03E-05	2.19E-07
395 - Williston Basin	206	0	649,228,154ª	3.18E-07	5.28E-10
430 - Permian Basin	438,567	1,939	2,356,640,169	1.86E-04	8.23E-07
All Other Basins	339,247	1,573	19,553,610,690ª	1.73E-05	8.05E-08

a. Subpart W production exceeded DrillingInfo production for basin, DrillingInfo production used.

Table 12. GHGRP Subpart W RY2016 Oil Production CO2 and CH4 Emissions and Activity Data andCalculated EFs for Miscellaneous Production Flaring

Basin	Oil CO ₂ (mt)	Oil CH₄ (mt)	Liquids Produced (bbl)	Oil CO₂ EF (kg/bbl/yr)	Oil CH₄ EF (kg/bbl/yr)
220 - Gulf Coast Basin (LA, TX)	389,281	1,630	518,218,649ª	7.51E-04	3.15E-06
395 - Williston Basin	274,154	778	322,617,029	8.50E-04	2.41E-06
430 - Permian Basin	563,672	1,991	533,358,906	1.06E-03	3.73E-06
All Other Basins	414,762	1,035	689,536,735ª	6.02E-04	1.50E-06

a. Subpart W production exceeded DrillingInfo production for basin, DrillingInfo production used.

EPA calculated national emissions using the appropriate national production (i.e., total gas production or liquids production) for each basin or group. Total gas production data for each basin and for the nation were determined from DrillingInfo. Total liquids production data for each basin were determined from DrillingInfo, while the total national liquids production was available from EIA (consistent with current methodologies for other GHGI sources that rely on total national production data). Therefore, the national liquids production for all other basins equals the EIA production, minus the DrillingInfo production for each of the three basins. The production data and resulting national emissions for 2015 and 2016 are shown in Table 13 and Table 14.

Table 13. Total Production Data and Miscellaneous Production Flaring Emissions for Natural Gas
and Petroleum Systems, Reporting Year 2015

Basin	Total Gas Production (mscf)	Total Liquids Production (bbl)	Gas CO ₂ (mt)	Gas CH₄ (mt)	Oil CO₂ (mt)	Oil CH₄ (mt)
220 - Gulf Coast Basin (LA, TX)	3,519,664,923	652,726,411	360,782	1,288	859,858	3,548
395 - Williston Basin	645,705,949	456,442,746	56	0	874,248	2,188
430 - Permian Basin	2,367,810,821	688,752,179	673,592	2,992	493,763	1,893
All Other Basins	24,940,124,177	1,635,998,664	380,431	1,639	1,189,773	4,094
Total	31,473,305,870	3,433,920,000	1,414,861	5,918	3,417,643	11,724

Table 14. Total Production Data and Miscellaneous Production Flaring Emissions for Natural Gasand Petroleum Systems, Reporting Year 2016

Basin	Total Gas Production (mscf)	Total Liquids Production (bbl)	Gas CO2 (mt)	Gas CH4 (mt)	Oil CO2 (mt)	Oil CH4 (mt)
220 - Gulf Coast Basin (LA, TX)	3,061,920,423	518,218,649	245,817	672	389,281	1,630
395 - Williston Basin	649,228,154	396,772,982	206	0	337,170	957
430 - Permian Basin	2,546,961,000	733,544,659	473,985	2,095	775,235	2,738
All Other Basins	23,551,484,913	1,584,268,710	408,609	1,895	952,951	2,378
Total	29,809,594,491	3,232,805,000	1,128,617	4,662	2,454,637	7,703

3.1.2 **Production Tanks**

Based on the CH₄ EF methodology documented in the 2017 Production memo, the EPA calculated oil and condensate tank CO₂ EFs for several tank categories, using subpart W data: large tanks with flaring; large tanks with a vapor recovery unit (VRU); large tanks without controls; small tanks with flaring; small tanks without flaring; and malfunctioning separator dump valves. EPA applied several steps described in the 2017 Production memo to apportion the reported subpart W data to each of the categories. EPA then summed the emissions and divided by the throughput for each tank category. Table 15 presents the resulting CO₂ EFs for RY2015 (which are applied for 2015 and all prior years in the time series) and RY2016.

Table 15. GHGRP Subpart W-based Oil and Condensate Tank CO₂ EFs (kg/bbl/yr)

Tank Catagony	Oil Ta	nks EF	Condensat	e Tanks EF
Tank Category	2015	2016	2015	2016
Large Tanks with Flaring	7.21	6.98	8.33	10.90
Large Tanks with VRU	0.037	0.025	0.11	0.12
Large Tanks without Controls	0.016	0.019	0.019	0.026
Small Tanks with Flaring	0.27	1.64	1.96	4.46
Small Tanks without Flares	0.078	0.066	0.28	0.46
Malfunctioning Dump Valves	0.013	0.012	8.19E-05	6.98E-05

3.1.4 Pneumatic Controllers

Based on the CH₄ EF methodology documented in the 2016 Production memo, the EPA calculated pneumatic controller CO₂ EFs for low, intermittent, and high bleed controllers using Subpart W RY2014 data. EPA divided the reported emissions by the number of reported controllers for each controller type to calculate EFs. All pneumatic controllers data were considered together, and thus pneumatic controller EFs for natural gas and petroleum systems are identical. Table 16 presents the subpart W activity and emissions data, along with the calculated CO₂ EFs.

Controller Type	# Controllers	Total CO ₂ Emissions (mt)	CO2 EF (kg/controller/yr)
Low Bleed	198,941	2,382	12
Intermittent Bleed	561,283	98,269	175
High Bleed	27,208	9,790	360

Table 16. GHGRP Subpart W RY2014 Activity and Emissions Data and Calculated EFs for Pneumatic Controllers

3.1.5 Pneumatic Pumps

Based on the CH₄ EF methodology documented in the 2016 Production memo, the EPA calculated a pneumatic pump CO₂ EF using Subpart W RY2014 data. EPA divided the reported emissions by the number of reported pneumatic pumps to calculate the EF. All pneumatic pumps data were considered together, and thus the EF for natural gas and petroleum systems is identical. Table 17 presents the subpart W activity and emissions data, along with the calculated CO₂ EF.

Table 17. GHGRP Subpart W RY2014 Activity and Emissions Data and Calculated EF for Pneumatic Pumps

# Pumps	Total CO ₂ Emissions (mt)	CO2 EF (kg/pump/yr)
79,760	11,647	146

3.1.3 HF Gas Well Completions and Workovers

EPA calculated CO₂ emissions for the 2018 GHGI public review draft using the CH₄ EF methodology documented in the 2014 HF Completion and Workover memo and 2015 HF Completion and Workover memo. See the earlier versions of this memo from June and October 2017 for the resulting EFs. However, both the CO₂ and CH₄ calculation methodologies for this source were revised for the final 2018 GHGI, and these revisions are documented in the *2018 Year-Specific Emissions memo*.¹⁷

3.1.6 Liquids Unloading

EPA calculated CO_2 emissions for the 2018 GHGI public review draft using the CH_4 EF methodology documented in the 2017 Production memo. See the earlier versions of this memo from June and October 2017 for the resulting EFs. However, both the CO_2 and CH_4 calculation methodologies for this source were revised for the final 2018 GHGI, and these revisions are documented in the 2018 Year-Specific Emissions memo.

3.2 **Processing CO₂ Emission Factors**

The EPA developed gas processing CO_2 EFs for the plant grouped emission sources (reciprocating compressors, centrifugal compressors with wet seals, centrifugal compressors with dry seals, dehydrators, flares, and plant fugitives), blowdowns and venting, and AGR vents. The CH₄ EFs for the grouped sources and blowdowns and venting were recently revised using subpart W data, and the EPA applied the same methodology to calculate CO_2 EFs. AGR vent emissions were not previously calculated from subpart W data (as CH₄ emissions are not reported for this source), but the EPA calculated a subpart W-based CO_2 EF and determined the corresponding activity data for this source.

¹⁷ "Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2016: Revisions to Create Year-Specific Emissions and Activity Factors," available online at https://www.epa.gov/ghgemissions/natural-gas-and-petroleum-systems-ghg-inventory-additional-information-1990-2016-ghg.

Based on the CH_4 EF methodology documented in the 2017 Processing memo, the EPA calculated the plant grouped source CO_2 EFs using subpart W data (the purpose of the plant grouped EF is discussed in Section 3.4). Subpart W RY2015 and RY2016 data and calculated CO_2 EFs for the plant grouped sources are presented in Table 18 and Table 19.

Emission Source	CO2 Emissions (mt)	Activity Count (plants or compressors)		CO2 EF (kg/compressor/yr or kg/plant/yr)
Reciprocating compressors	7,618	2,678	compressors	2,845
Centrifugal compressors with wet seals	1,259	264	compressors	4,768
Centrifugal compressors with dry seals	21	215	compressors	400
Dehydrators	7,430	466	plants	15,944
Flares	4,231,009	466	plants	9,079,418
Plant fugitives	2,244	466	plants	4,816
Plant Grouped Sources	4,249,580	466	plants	9,119,411

Table 18. GHGRP Subpart W RY2015 Emissions and Activity Data and Calculated EFs for GasProcessing Plant Grouped Sources

Table 19. GHGRP Subpart W RY2016 Emissions and Activity Data and Calculated EFs for Gas
Processing Plant Grouped Sources

Emission Source	CO₂ Emissions (mt)	Activity Count (plants or compressors)		CO2 EF (kg/compressor/yr or kg/plant/yr)
Reciprocating compressors	7,275	2,737	compressors	2,658
Centrifugal compressors with wet seals	839	226	compressors	3,711
Centrifugal compressors with dry seals	39	228	compressors	474
Dehydrators	4,467	447	plants	9,994
Flares	3,621,791	447	plants	8,102,440
Plant fugitives	2,599	447	plants	5,813
Plant Grouped Sources	3,637,009	447	plants	8,136,640

Based on the CH_4 EF methodology documented in the 2017 Processing memo, the EPA also calculated the blowdown and venting CO_2 EF using subpart W data. Subpart W RY2015 data and the calculated CO_2 EF for blowdowns and venting are presented in Table 20.

 Table 20. GHGRP Subpart W RY2015 Emissions and Activity Data and Calculated EF for Gas

 Processing Blowdown and Venting

RY	CO2 Emissions (mt)	Activity Count (plants)	CO₂ EF (kg/plant/yr)
2015	11,059	466	23,731
2016	7,817	447	17,487

For AGR vent emissions, the existing CH₄ EF methodology does not rely on subpart W, but the EPA applied a similar methodology as the other processing sources to develop CO₂ EFs and activity data from subpart W data. The EPA summed the reported AGR vent CO₂ emissions for gas processing plants and divided by the total reported count of plants for each RY to calculate CO₂ EFs. Subpart W RY2015 and RY2016 data and the calculated CO₂ EFs for AGR vents are presented in Table 21. To calculate national CO₂ emissions, the CO₂ EF was multiplied by the number of gas plants each year.

Year	CO ₂ Emissions (mt)	Activity Count (plants)	CO2 EF (kg/plant/yr)
2015	10,441,754	466	22,407,197
2016	11,101,161	447	24,834,813

Table 21. GHGRP Subpart W Emissions and Activity Data and Calculated EFs for Gas Processing AGR Vents

3.3 Transmission and Storage CO₂ Emission Factors

3.3.1 Pneumatic Controllers

Based on the CH_4 EF methodology documented in the 2016 Transmission memo, the EPA calculated transmission station and storage station pneumatic controller CO_2 EFs for low, intermittent, and high bleed controllers using Subpart W RY2011 - RY2016 data. The EPA divided the reported emissions by the number of reported controllers for each controller type to calculate EFs. Table 22 and Table 23 present the subpart W activity and emissions data, along with the calculated CO_2 EFs. The RY2011 EFs were applied for all prior years in the time series.

Table 22. GHGRP Subpart W Activity and Emissions Data and Calculated EFs for Transmission Station Pneumatic Controllers

Controller Type	Data Element	2011	2012	2013	2014	2015	2016
	Total Count	2,203	1,114	1,158	1,173	1,508	1,000
High Bleed	CO ₂ Emissions (mt)	203	106	106	107	121	85
	CO2 EF (kg/controller/yr)	92	95	91	91	80	85
	Total Count	8,343	9,114	9,903	11,160	10,891	11,122
Intermittent Bleed	CO ₂ Emissions (mt)	673	736	747	134	105	120
	CO ₂ EF (kg/controller/yr)	81	81	75	12	10	11
	Total Count	644	880	857	1,078	1,033	943
Low Bleed	CO ₂ Emissions (mt)	4.6	6.2	6.2	6.7	4.3	4.5
	CO ₂ EF (kg/controller/yr)	7.1	7.0	7.3	6.2	4.2	4.8

Table 23. GHGRP Subpart W Activity and Emissions Data and Calculated EFs for Underground NaturalGas Storage Station Pneumatic Controllers

Controller Type	Data Element	2011	2012	2013	2014	2015	2016
	Total Count	1,253	1,100	1,089	1,271	1,024	1,051
High Bleed	CO ₂ Emissions (mt)	116	118	116	117	64	97
	CO₂ EF (kg/controller/yr)	92	107	106	92	63	92
	Total Count	1,391	1,539	1,601	2,045	2,098	2,288
Intermittent Bleed	CO ₂ Emissions (mt)	16	21	21	24	22	50
	CO ₂ EF (kg/controller/yr)	12	13	13	12	10	22
	Total Count	250	319	366	319	320	289
Low Bleed	CO ₂ Emissions (mt)	1.9	2.4	2.8	2.2	1.4	1.6
	CO ₂ EF (kg/controller/yr)	7.5	7.4	7.6	7.0	4.4	5.5

3.3.2 Flares

The EPA developed GHGI flare CO_2 EFs for transmission stations and underground natural gas storage using subpart W data. As discussed in Section 1.3, the GHGI CO_2 emissions calculation methodology did not previously calculate CO_2 emissions from flares. Therefore, the EPA updated the methodology to calculate CO_2 emissions with new line items for transmission and storage flares.

The EPA divided the reported flare CO_2 and CH_4 emissions by the number of reported stations to calculate the EFs. Subpart W transmission station and underground natural gas storage flare data are presented in Table 24 and Table 25. The applicable activity data to calculate national emissions are the national number of stations, which are already calculated in the GHGI. The RY2015 EFs were applied for all prior years in the time series.

Note these flaring emissions estimates were developed from reported GHGRP data, wherein transmission compressor stations that service underground storage fields might be classified as transmission compression as the primary function. Therefore, a fraction of the transmission station flaring emissions may occur at stations that service storage facilities; such stations typically require flares, compared to a typical transmission compressor station used solely for mainline compression that does not require liquids separation, dehydration, and flaring.

Year	Total # Stations	# Stations With Flares	# Flares	Total CO ₂ Emissions (mt)	CO2 EF (kg/station/yr)	Total CH ₄ Emissions (mt)	CH4 EF (kg/station/yr)
2015	524	18	30	23,833	45,483	93	177
2016	529	17	26	25,116	47,479	112	212

Table 24. GHGRP Subpart W RY2015 Emissions and Activity Data and Calculated EFs for Transmission Station Flares

Table 25. GHGRP Subpart W RY2015 Emissions and Activity Data and Calculated EFs forUnderground Natural Gas Storage Flares

Year	Total # Stations	# Stations With Flares	# Flares	Total CO ₂ Emissions (mt)	CO2 EF (kg/station/yr)	Total CH ₄ Emissions (mt)	CH₄ EF (kg/station/yr)
2015	53	9	23	3,587	67,676	35	651
2016	53	9	21	2,343	44,214	30	572

3.4 Time Series Considerations

For the production segment sources discussed in Section 3.1, in general, the EPA applied the same methodology to calculate CO₂ over the time series as used for calculating CH₄ emissions over the time series.¹⁸ For oil and condensate tanks, the EPA applies category-specific EFs for every year of the time series and for pneumatic controllers and pumps, category-specific EFs are applied for each year of the time series.

For associated gas venting and flaring, for CH₄, the EPA applied the subpart W 2015 EFs for years prior to 2015 and year-specific subpart W EFs were applied for 2015 and forward.

For the miscellaneous production flaring time series, the previous GHGI flare emission estimate (representing both production and processing), fluctuated based on activity data (EIA's estimated annual vented and flared volumes). Assessment of subpart W CO₂ data over the time series for this source indicates that miscellaneous production flaring emissions do not show a clear trend. See the Requests for Stakeholder Feedback section for more information. In the revised approach to use subpart W-based EFs (kg/mscf or kg/bbl), the EF was held constant for years prior to 2015 and flare emission estimates fluctuated with gas and liquids production data over the time series.

For certain processing sources discussed in Section 3.2, the EPA applied the same methodology to calculate CO₂ over the time series as used for calculating CH₄ emissions over the time series.¹⁹ For plant grouped emission sources and blowdowns and venting, GRI/EPA 1996 EFs are used for 1990 through 1992; EFs calculated from subpart W are used for 2011 forward; and EFs for 1993 through 2010 are developed through linear interpolation.

¹⁸ Additional details on current time series calculations for production segment sources are provided in the 2014 HF Completion and Workover memo, 2015 HF Completion and Workover memo, 2016 Production memo, and 2017 Production memo.

¹⁹ Additional details on current time series calculations are provided in the 2017 Processing memo.

For CO₂ from AGR vents, the EPA adopted a similar methodology as the other processing sources (maintain the current GRI/EPA 1996 EFs for 1990 through 1992, apply the subpart W-based EFs for 2011 forward, and develop EFs for 1993 through 2010 using linear interpolation).

For transmission and storage flares, the EPA applied the 2015 subpart W-based EF (kg/station) for all prior years of the time series and year-specific EFs for 2015 and forward.

4. National Emissions Estimates

For sources with the largest contribution to CO_2 emissions (e.g., flaring sources), national CO_2 emissions for year 2015 using the subpart W-based approaches discussed in Section 3 (and implemented in the 2018 GHGI) are compared against the 2017 GHGI in Table 26 and Table 27.

Industry Segment and Emission Source	2017 GHGI (Year 2015)	2018 GHGI (Year 2015)
Exploration	NA	0.29
HF Completions	0.07	0.28
Production	17.6	3.40
Miscellaneous Flaring	17.6 ^a	1.41
Tanks	0.03	1.09
HF Workovers	0.03	0.08
Processing	23.7	21.04
AGR Vents	23.6	14.95
Plant Grouped Sources	0.1	6.08
Transmission & Storage	0	0.15
Transmission Flares	0	0.11
Underground Storage Flares	0	0.02
Distribution	0	0.01
Natural Gas Systems Total	42.4	24.9

Table 26. Natural Gas Systems Year 2015 National CO₂ Emissions (MMT) for 2018 GHGI Compared to 2017 GHGI

NA (Not Applicable)

a. Also represents flaring from petroleum production and gas processing.

Table 27. Petroleum Systems Year 2015 National CO₂ Emissions (MMT) for 2018 GHGI Compared to 2017 GHGI

Industry Segment and Emission Source	2017 GHGI (Year 2015)	2018 GHGI (Year 2015)
Exploration	NA	0.26
Well Testing	NE	0.26
Production	0.64	24.48
Associated Gas	NE	12.23
Tanks	0.52	8.72
Miscellaneous Flaring	NE ^a	3.42
Transportation	NE	NE
Refining	2.93	4.01
Petroleum Systems Total	3.57	28.75

NA (Not Applicable)

NE (Not Estimated)

a. In the 2017 GHGI, emissions were generally included within the natural gas systems production flaring estimate.

The CO₂ revisions resulted in an overall shift of CO₂ emissions from Natural Gas systems to Petroleum systems. This is due to the availability of industry segment-specific and emission source-specific data in subpart W, whereas previous data sources were not as granular. The previous GHGI accounted for all onshore production and gas processing flaring emissions under a single line item in the production segment of natural gas systems. Using the revised approaches, flaring emissions are now specifically calculated for natural gas production, petroleum production, and gas processing (within the plant grouped emission sources). The shift in CO₂ emissions from Natural Gas systems to Petroleum systems is also due to the inclusion of associated gas flaring as a specific line item under Petroleum systems; this is the largest source of CO₂ emissions for the revisions.

5. October 2017 Requests for Stakeholder Feedback

The EPA initially sought feedback on the questions below in the version of this memo released in October 2017. The questions below were minimally altered to specifically cite the October 2017 memo. The EPA discusses feedback received, and further planned improvements to the GHGI methodology, in Chapter 3.8 of the *Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2016* (April 2018). The EPA continues to welcome additional stakeholder feedback on these questions for potential updates to future GHGIs.

<u>General</u>

- 1. EPA seeks stakeholder feedback on the general approach of using subpart W reported CO₂ emissions data to revise the current CO₂ emissions calculation methodology (described in Section 1) in the GHGI.
- 2. EPA seeks feedback on using consistent calculation methodologies for both CH₄ and CO₂, when GHGI relies on subpart W data. Are there sources where the CH₄ and CO₂ methodologies based on subpart W should differ?

Associated Gas Venting and Flaring (Section 3.1.1)

- 3. EPA seeks feedback on the methodology to calculate national emissions from associated gas venting and flaring. In particular, which methodology discussed in Section 3.1.1 of the October 2017 memo (national-level, or NEMS region-level) or other approach best reflects national-level emissions from associated gas venting and flaring by taking into account variability of this source?
- 4. What scale-up assumptions should EPA make regarding associated gas venting or flaring for regions that do not report any oil well data to GHGRP? Should EPA assume that these regions have no such activity, or should EPA assign surrogate EF and AF values (e.g., average from all other reported regions, or some other methodology)?
- 5. Should EPA consider an approach not presented in Section 3.1.1 of the October 2017 memo?
 - a. For example, scaling subpart W-based estimates using production rather than oil well counts?
 - b. For example, disaggregating to the AAPG basin-level?

GHGI Sources that Are Not Currently Estimated Using Subpart W data

6. In the October 2017 memo, Section 3.1.7 discusses considerations for developing EFs and associated activity data for miscellaneous production flaring that facilitate scaling reported subpart W data to a national level. The EPA has presented a preliminary approach that develops an EF in units of emissions per well. National active well counts would be paired with such EF to calculate emissions in the GHGI. The EPA seeks feedback on this approach, or suggestions of other approaches that would facilitate scaling to a national level and time series population.

April 2018

7. For sources discussed in the October 2017 memo that do not currently estimate CH₄ emissions using subpart W, EPA is considering which year(s) of subpart W data to use in developing the CO₂ emissions methodologies. For miscellaneous production flaring, the EPA reviewed reported emissions and activity data for RY2011 - RY2014. However, wellhead counts for RY2011 - RY2014 are only reported by those facilities that calculated equipment leak emissions using Methodology 1, and as such, are not comprehensive. At the time of the 2016 Production memo, 83% of reporting facilities for RY2011, 85% of RY2012 reporting facilities, 93% of RY2013 facilities, and 98% of RY2014 reporting facilities reported wellhead counts under Methodology 1. In addition, facilities only reported total wellheads and did not report gas and oil wellhead counts separately for RY2011 - RY2014. The EPA calculated the CO₂ EFs under consideration using RY2015 only, because well counts from all reporting facilities are reported. However, the EPA requests feedback on whether it is appropriate to consider data from prior reporting years, which would have more uncertainty due to incomplete coverage, in order to show a trend over the time series. Table 28 provides the reported subpart W emissions and activity data for RY2011-RY2015.

Year	CO ₂ Emissions (mt)	# Flares	# Wells (a)	CO₂ EF (kg/well)
2011	2,252,297	13,509	371,604	6,061
2012	3,616,326	16,356	398,137	9,083
2013	4,596,329	21,098	415,355	11,066
2014	4,841,116	22,155	502,391	9,636
2015	3,779,110	20,293	527,170	7,169

a. Total gas and oil wellheads. Wellhead counts for RY2011 through RY2014 are available from those onshore production facilities that calculated equipment leak emissions using Methodology 1.

For transmission and storage segment flares, the EPA relies on RY2015 data for the revisions under consideration, because all flaring emissions are reported under the flare stacks source. Whereas, for RY2011 - RY2014, flare emissions are reported under flare stacks and each individual emission source.

8. Section 3.4 in the October 2017 memo discusses time series considerations for transmission and storage flares. The EPA is considering applying a subpart W-based EF (kg/station) for all years of the time series. However, few transmission and storage stations reported flares for RY2015 (see Table 24 and Table 25). Therefore, EPA might alternatively assume that flares did not operate in 1990 (i.e., an EF of 0), apply the subpart W-based EF for 2011 forward, and apply linear interpolation from 1991 through 2010. The EPA seeks feedback on these approaches, or suggestions of other approaches to time series population.

Appendix A – Current (2017) GHGI CO₂ Emission Factors

All EFs are presented in the same units as the EFs under consideration for the 2018 GHGI; kg/[unit].

Emission Source	GHGI CO₂ EF	EF Units
Natural Gas & Petroleum Production		
Stripper Wells (for Associated Gas Venting)	2.47	kg/well
Condensate Tank Vents - Without Control Devices	0.18	kg/bbl
Condensate Tank Vents - With Control Devices	0.037	kg/bbl
Oil Tanks	0.18	kg/bbl
HF Gas Well Completions and Workovers	18,367ª	kg/event
Pneumatic Controllers, all bleed types (Natural Gas)	144ª	kg/controller
Low Bleed Pneumatic Controllers (Petroleum)	8.8	kg/controller
Intermittent Bleed Pneumatic Controllers (Petroleum)	83.9	kg/controller
High Bleed Pneumatic Controllers (Petroleum)	238.9	kg/controller
Pneumatic Pumps (Natural Gas)	168.4ª	kg/pump
Pneumatic Pumps (Petroleum)	82.8	kg/pump
Liquids Unloading with Plunger Lifts	613ª	kg/well
Liquids Unloading without Plunger Lifts	678ª	kg/well
Onshore Production & Processing - Flaring Emissions	40,624	kg/well
Natural Gas Processing	•	
Reciprocating compressors - before CO2 removal	4,764	kg/compressor
Reciprocating compressors - after CO2 removal	1,058	kg/compressor
Centrifugal compressors with wet seals - before CO2 removal	21,859	kg/compressor
Centrifugal compressors with wet seals - after CO2 removal	4,854	kg/compressor
Centrifugal compressors with dry seals - before CO2 removal	10,719	kg/compressor
Centrifugal compressors with dry seals - after CO2 removal	2,380	kg/compressor
Plant fugitives - before CO2 removal	3,364	kg/plant
Plant fugitives - after CO2 removal	747	kg/plant
Kimray pumps	859	kg/plant
Dehydrator vents	5,291	kg/plant
Plant Grouped Sources	95,303	kg/plant
AGR vents	35,394,396	kg/plant
Blowdowns and venting	8,363	kg/plant
Transmission		
High Bleed Pneumatic Controllers	84.43	kg/controller
Intermittent Bleed Pneumatic Controllers	10.95	kg/controller
Low Bleed Pneumatic Controllers	6.22	kg/controller
Underground NG Storage		
High Bleed Pneumatic Controllers	82.21	kg/controller
Intermittent Bleed Pneumatic Controllers	10.74	kg/controller
Low Bleed Pneumatic Controllers	6.34	kg/controller

a. Average EF based on data from all NEMS regions.

Appendix B – GHGRP Subpart W Associated Gas Venting and Flaring Emissions, by basin, for RY2011-2016

	2011		2012		2013		2014		2015		2016	
Basin	Total CO ₂ + CH ₄ Emissions (mt CO ₂ e)	% of Total	Total CO ₂ + CH ₄ Emissions (mt CO ₂ e)	% of Total	Total CO ₂ + CH ₄ Emissions (mt CO ₂ e)	% of Total	Total CO ₂ + CH ₄ Emissions (mt CO ₂ e)	% of Total	Total CO ₂ + CH ₄ Emissions (mt CO ₂ e)	% of Total	Total CO ₂ + CH ₄ Emissions (mt CO ₂ e)	% of Total
160 - Appalachian Basin	256	0%	267	0%	272	0%	208	0%	183	0%	6,061	0%
160A - Appalachian Basin (Eastern												
Overthrust Area)	16,224	0%	23,477	0%	27,119	0%	15,055	0%	36,404	0%	18,016	0%
210 - Mid-Gulf Coast Basin	22,825	0%	14,535	0%	32,584	0%	68,569	1%	95,521	1%	103,081	1%
220 - Gulf Coast Basin (LA, TX)	773,401	10%	944,157	9%	1,411,635	12%	990,875	8%	688,957	6%	381,131	5%
230 - Arkla Basin	5,306	0%	3,354	0%	3,552	0%	3,551	0%	17,847	0%	12,171	0%
260 - East Texas Basin	2,434	0%	325,252	3%	48,131	0%	130	0%	1,134	0%	3,560	0%
305 - Michigan Basin	103,228	1%	159,425	2%	130,168	1%	124,802	1%	101,424	1%	73,317	1%
345 - Arkoma Basin	18,059	0%	18,152	0%	2,824	0%	6,220	0%	5 <i>,</i> 950	0%	3,614	0%
350 - South Oklahoma Folded Belt	0	0%	4,580	0%	17,422	0%	47,665	0%	38,627	0%	25,359	0%
355 - Chautauqua Platform	39,207	1%	23,253	0%	13,910	0%	9,559	0%	5,357	0%	2,692	0%
360 - Anadarko Basin	1,951,932	26%	1,079,360	10%	79,744	1%	194,986	2%	199,248	2%	8,674	0%
375 - Sedgwick Basin	0	0%	661,828	6%	0	0%	234	0%	3,033	0%	0	0%
385 - Central Kansas Uplift	71,586	1%	90,656	1%	101,570	1%	93,974	1%	28,525	0%	19,500	0%
395 - Williston Basin	3,316,405	45%	5,746,941	55%	7,863,150	67%	9,691,472	76%	8,528,583	68%	5,420,456	66%
415 - Strawn Basin	0	0%	0	0%	0	0%	6,291	0%	0	0%	0	0%
420 - Fort Worth Syncline	39,882	1%	50,428	0%	2,186	0%	4,907	0%	28	0%	25	0%
430 - Permian Basin	677,415	9%	779,460	8%	1,229,008	11%	1,051,295	8%	2,448,137	20%	1,967,988	24%
435 - Palo Duro Basin	19,829	0%	19,510	0%	3	0%	62	0%	1,866	0%	0	0%
515 - Powder River Basin	39,890	1%	77,435	1%	197,564	2%	106,907	1%	69,643	1%	41,490	1%
520 - Big Horn Basin	0	0%	0	0%	0	0%	1,088	0%	944	0%	0	0%
535 - Green River Basin	294	0%	3,626	0%	8,404	0%	3,191	0%	2	0%	0	0%
540 - Denver Basin	267,533	4%	313,901	3%	383,261	3%	228,937	2%	82,878	1%	24,899	0%
545 - North Park Basin	0	0%	0	0%	0	0%	0	0%	26,989	0%	40,151	0%
575 - Uinta Basin	22,251	0%	31,682	0%	115,014	1%	48,026	0%	34,872	0%	28,416	0%
580 - San Juan Basin	9,910	0%	10,470	0%	22,593	0%	8,536	0%	13,959	0%	13,795	0%
595 - Piceance Basin	0	0%	0	0%	0	0%	0	0%	124	0%	451	0%
745 - San Joaquin Basin	10,487	0%	3,248	0%	9,836	0%	2,557	0%	34,723	0%	7,499	0%
820 - AK Cook Inlet Basin	0	0%	0	0%	0	0%	0	0%	83	0%	1	0%
TOTAL	7,408,353	100%	10,384,996	100%	11,699,948	100%	12,709,097	100%	12,465,041	100%	8,202,349	100%

Appendix C – GHGRP Subpart W Miscellaneous Production Flaring Emissions, by basin, for RY2011-2016

	2011		2012		2013		2014		2015		2016	
Basin	Total CO2 + CH4 Emissions (mt CO2e)	% of Total	Total CO2 + CH4 Emissions (mt CO2e)	% of Total	Total CO2 + CH4 Emissions (mt CO2e)	% of Total	Total CO2 + CH4 Emissions (mt CO2e)	% of Total	Total CO2 + CH4 Emissions (mt CO2e)	% of Total	Total CO2 + CH4 Emissions (mt CO2e)	% of Total
140 - Florida Platform	0	0%	31	0%	0	0%	316	0%	95	0%	2,905	0%
160 - Appalachian Basin	0	0%	9,474	0%	156,596	3%	1,508	0%	439	0%	3,091	0%
160A - Appalachian Basin (Eastern Overthrust Area)	10,059	0%	21,295	1%	68,263	1%	44,956	1%	51,167	1%	66,029	2%
200 - Black Warrior Basin	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
210 - Mid-Gulf Coast Basin	58,779	2%	70,807	2%	129,025	2%	150,254	3%	142,160	3%	107,848	4%
220 - Gulf Coast Basin (LA TX)	347,141	14%	625,252	16%	1,313,767	25%	1,311,265	25%	1,301,568	30%	658,331	23%
230 - Arkla Basin	2,447	0%	1,204	0%	79,635	2%	19,459	0%	24,286	1%	2,035	0%
260 - East Texas Basin	43,960	2%	25,802	1%	26,203	1%	15,192	0%	17,847	0%	12,968	0%
305 - Michigan Basin	4,949	0%	14,923	0%	4,402	0%	3,210	0%	3,230	0%	5,215	0%
345 - Arkoma Basin	13	0%	12	0%	12	0%	0	0%	24	0%	9	0%
350 - South Oklahoma Folded Belt	1,075	0%	1,552	0%	1,324	0%	2,418	0%	5,856	0%	7,982	0%
355 - Chautauqua Platform	424	0%	30,371	1%	15,108	0%	29,880	1%	3,408	0%	584	0%
360 - Anadarko Basin	142,911	6%	70,685	2%	145,823	3%	85,971	2%	232,793	5%	143,872	5%
375 - Sedgwick Basin	51	0%	0	0%	0	0%	1,394	0%	0	0%	254	0%
385 - Central Kansas Uplift	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
395 - Williston Basin	913,695	38%	488,554	12%	708,243	14%	1,473,619	28%	910,642	21%	293,829	10%
400 - Ouachita Folded Belt	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
415 - Strawn Basin	5,967	0%	5,587	0%	2,269	0%	7,491	0%	2,365	0%	0	0%
420 - Fort Worth Syncline	6,326	0%	8,690	0%	23,043	0%	35,343	1%	38,969	1%	568	0%
425 - Bend Arch	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
430 - Permian Basin	374,182	16%	2,108,306	54%	1,962,876	38%	1,508,848	29%	1,213,197	28%	1,100,472	38%
435 - Palo Duro Basin	0	0%	0	0%	0	0%	354	0%	390	0%	71	0%
450 - Las Animas Arch	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
455 - Las Vegas-Raton Basin	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
507 - Central Western Overthrust	625	0%	925	0%	701	0%	111	0%	112	0%	120	0%
515 - Powder River Basin	28,534	1%	52,245	1%	105,528	2%	125,437	2%	102,594	2%	34,839	1%
520 - Big Horn Basin	4,122	0%	2,494	0%	177	0%	1,954	0%	1,165	0%	0	0%
530 - Wind River Basin	0	0%	373	0%	528	0%	621	0%	129	0%	28	0%
535 - Green River Basin	84,576	4%	158,743	4%	255,830	5%	59,517	1%	55,234	1%	54,918	2%
540 - Denver Basin	61,760	3%	13,454	0%	10,950	0%	89,192	2%	118,692	3%	153,414	5%
545 - North Park Basin	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%
575 - Uinta Basin	4,588	0%	16,025	0%	2,702	0%	12,325	0%	8,066	0%	14,383	1%
580 - San Juan Basin	394	0%	71	0%	39,238	1%	70,284	1%	28,342	1%	187	0%
585 - Paradox Basin	236,981	10%	146,578	4%	113,924	2%	161,528	3%	61,032	1%	55,460	2%
595 - Piceance Basin	14,247	1%	5,043	0%	5,828	0%	4,507	0%	3,257	0%	4,828	0%
730 - Sacramento Basin	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%

	2011		2012		2013		2014		2015		2016	
Basin	Total CO2 + CH4 Emissions (mt CO2e)	% of Total	Total CO2 + CH4 Emissions (mt CO2e)	% of Total	Total CO2 + CH4 Emissions (mt CO2e)	% of Total	Total CO2 + CH4 Emissions (mt CO2e)	% of Total	Total CO2 + CH4 Emissions (mt CO2e)	% of Total	Total CO2 + CH4 Emissions (mt CO2e)	% of Total
740 - Coastal Basins	0	0%	0	0%	0	0%	136	0%	136	0%	0	0%
745 - San Joaquin Basin	16,360	1%	13,884	0%	15,494	0%	8,547	0%	16,082	0%	26,941	1%
750 - Santa Maria Basin	0	0%	0	0%	2,204	0%	864	0%	232	0%	277	0%
760 - Los Angeles Basin	933	0%	2,486	0%	2,191	0%	1,591	0%	1,548	0%	0	0%
820 - AK Cook Inlet Basin	1,716	0%	2,118	0%	3,263	0%	2,151	0%	514	0%	490	0%
890 - Arctic Coastal Plains Province	35,172	1%	25,434	1%	26,837	1%	11,040	0%	11,188	0%	119,898	4%
TOTAL	2,401,985	100%	3,922,418	100%	5,221,983	100%	5,241,284	100%	4,356,758	100%	2,871,844	100%

Exhibit 5

(http://www.txsmartbuy.com)

Bid Postings (http://www.txsmartbuy.com/sp)	Contracts	SPD Applications	Help (/help/)
			0 items

Back To Search Results

Camera, Thermal Imaging, 14.5 Degrees (38mm) Fixed Lens

Description: Camera, Thermal Imaging, 14.5 Degrees (38mm) Fixed Lens, FLIR GF320 Part No. 44401-0101, Plus Freight

Item Details

Price: \$86,950.00 UOM: EACH Contractor: Flir Commercial Systems Contract Number: 655-A1 (/contracts/view/1897) Contract Type: Term Commodity Code: 65535420012 Min. Order Quantity: 1 Delivery Days: 90 NIGP Code: 65535 Item Availability Start Date: 2/22/2017 Item Availability End Date: 10/31/2020 Supplier Part Number: 65535420012 Manufacturer Part #: GF320 44401-0101 Manufacturer: FLIR

Add to wish list (/product/6250620?itemdetail)

- Home (http://comptroller.texas.gov)
- Contact Us (http://comptroller.texas.gov/about/contact/)

POLICIES

- Privacy and Security Policy (https://comptroller.texas.gov/about/policies/privacy.php)
- Accessibility Policy (https://comptroller.texas.gov/about/policies/accessibility.php)
- Link Policy (https://comptroller.texas.gov/about/policies/links.php)
- Texas.gov (http://texas.gov)
- Search from the Texas State Library (https://www.tsl.texas.gov/trail/index.html)
- Texas Homeland Security (http://www.dhs.gov/geography/texas)
- Texas Veterans Portal (https://veterans.portal.texas.gov/)
- Public Information Act (https://comptroller.texas.gov/about/policies/public-information-act.php)
- Texas Secretary of State (http://www.sos.state.tx.us/)
- HB855 Browser Statement

OTHER STATE SITES

- texas.gov (https://www.texas.gov/)
- Texas Records and Information Locator (TRAIL) (http://www.tsl.state.tx.us/trail/)
- State Link Policy
 (http://publishingext.dir.texas.gov/portal/internal/resources/DocumentLibrary/State%20Website%20Linking%20and%20Privacy%20Policy.pdf)
- Texas Veterans Portal (http://veterans.portal.texas.gov)

Exhibit 6

	Regional Ai	r Quality Council				
1445 Market Street, Suite 260						
REGIONAL AIR QUALITY COUNCIL Denver, Colorado 80200						
	PERSONAL PROPER	RTY LOAN AGREEMENT				
1. Loan Number:	2. Loan Date:					
SAMPLE		From:	To:			
3. Recipient:		Point of Contact:				
Address:		Phone/Fax/Email:				
4. Purpose of Loan:						
-	have been trained and certified in	n use of the FLIR Camera. They	will use this	tool to identify		
	oil and gas faciliities that result i			-		
and Conditions.						
5. The property descr	ibed below is offered by the Regi	onal Air Quality Council for use	without cha	rge to the		
	ve for a period not to exceed			-		
Item		015	Serial	Acquisition		
Number	Desci	ription	Number	Cost		
1 FLIR GF32	0 24°,		####	\$\$		
as describ	ed in the attached To cheet					
		00				
		-				
	CIEN					
	51					
6. This agreement is e	entered into with the understandi	ing that the property identified	shall remain	that of the		
Regional Air Quality C	Council and that this agreement m	nay be terminated by submission	on of a	_ day prior		
written notice to the	recipient by the Regional Air Qua	lity Council (see full terms and	condition or	reverse.)		
				_		
	Regional Air	Quality Council				
				_		
Signature of RAQC Au	Ithorized Official		Date			
Misty Howell, Office I	Vanager					
	Re	cipient				
Printed Name		Signature	2			
			. .	-		
Title			Date			

Terms and Conditions of Loan

- 1. The Recipient shall:
 - A. provide to the RAQC identification and location of leaks by county, including description of kind of equipment (valves, tanks, pumps, pipes, heater/treaters etc.) involved, location of leak on equipment, repair action taken, repair date, and an estimate of the size of the leaks and, where possible, the emissions reduced by the repair;
 - B. return the loaned property in like condition as when received from the Regional Air Quality Council, normal wear and tear excepted, and free of contamination, on or before the expiration date (as set forth in Section 2 of the first page of this Loan Agreement), unless the loan period is formally extended or terminated before the expiration date;
 - C. in case of loss, theft or damage of the loaned property, reimburse the Regional Air Quality Council at the current price of the replacement or repair;
 - D. assume all costs invloved in preparing, handling, loading, disconnecting, and transporting the loaned property from and to the RAQC;
 - E. indemnify and hold harmless the Regional Air Quality Council against any and all liability loss, damanges, claims, and costs incidental thereto as a result of Recipient's use or possession on the loaned property; and
 - F. use the loaned property only for the purpose specified in the loan agreement.
- 2. The loaned property shall not be modified, loaned, or transferred to a third party without the prior written permission of the Regional Air Quality Council.
- 3. The Recipient shall account for, or permit physical inpsection of the loaned property by the Regional Air Quality Council after notification from the Regional Air Quality Council.
- 4. Title to the loaned property is vested in and will remain with the Regional Air Quality Council and the loaned property shall be used only for offical purposes as described in Section 4 of the first page of this Loan Agreement.

I have read and understand the terms and conditions of this loan agreement.

Print Name and Title

Regional Air Quality Council (RAQC)

Recipient Employee Agreement for Handling and Security of RAQC FLIR Infrared Camera

I, _____, agree to the following handling and security procedures at all times when in possession of the RAQC FLIR Infrared Camera (IR Camera):

- 1) Prior to each time a recipient employee checks out the IR Camera from the RAQC, this form shall be read, signed and dated by the employee, and the employee's supervisor. The employee shall indicate the dates that the camera will be in the employee's possession, as noted on the form below.
- 2) When the IR Camera is in the recipient employee's possession, it shall be handled handled with reasonable care and diligence to the greatest extent possible.
- 3) When the IR Camera is in the recipient employee's possession, including overnight, it shall be stored in a lockable and secure area, which may include a responsible employees's office or locking storage cabinet or a locking storage area.
- 4) The IR Camera shall not be taken home by the responsible recipient employee.
- 5) The IR Camera shall not be left unattended in a vehicle even when the vehicle is locked. Exceptions when traveling with the camera may include when the responsible recipient employee strops to refill the vehicle for gasoline, so long as the vehicle remains within sight or view of the employee to the greatest extent possible during this time period.

The RAQC IR Camera is being checked out by the noted recipient employee below from the following date: _______.

Company Name	<u>Canad</u>	ß
Employee		كا

Supervisor

Date

FLIR GF320 24° Optical Imaging Camera List of Transport Case Materials and Equipment

Equipment

- Hard transport case (P/N 44401189)
- Infrared camera with lens (SN: 44401189)
- Battery, 2 ea. (P/N1196209-20) SRL-No. 004345 & 004292
- Shoulder strap
- Lens cap (2 ea.)
- Lens cap (mounted on lens)
- Mirco SD Memory card (2GB)
- 2 Memory card adapters (MicroSD to Mini SD; MicroSD to SD)
- WiFi USB mirco adapter & strap (EDIMAX 9577110814)
- Verbatim MiniSD/SD Pocket card reader (model 47128)
- Battery charger (NS 008625; P/N 1196210)
- Power supply, incl. multi-plugs (P/N 10231014)
- HDMI-DVI cable (P/N T910816)
- HDMI-HDMI cable (P/N T910815)
- USB cable (P/N T910423)
- Vista Voyages Lite Tripod with carrying case

Materials

- Printed Getting Started Guide
- Printed Important Information Guide
- Service & training brochure
- Downloads brochure
- User documentation CD-ROM (P/N T197554-11)
- FLIR QuickReport[™] PC software CD-ROM (P/N T197965-05)
- FLIR VideoReport[™] PC software CD-ROM (P/N T197556-08)

